egnite

Querx

Network thermometer, hygrometer, barometer and data logger

User Guide

Querx TH Querx WLAN TH Querx THP Querx PT Querx WLAN PT

Handbook version 4.0 Firmware version 4.0

Table of Contents

1 Introduction

- 1 1.1 Safety Notes
- 2 1.2 Symbols
- 3 1.3 About Querx
- 4 Querx at a Glance
- 6 Features
- 6 Possible Application Areas
- 7 Ships With
- 10 Querx Accessories

2 First Use

- 11 2.1 Before First Use
- 11 2.2 Mounting the Sensor
- 12 2.3 Model PT: Connecting the Sensor Cable
- 12 Connecting a Sensor
- 13 Mounting Individual Wires
- 14 2.4 Establishing the Network Connection
- 14 2.5 Power Supply
- 15 2.6 Network Configuration Via DHCP
- 15 2.7 Manual Network Configuration
- 16 Installing the Device Discoverer
- 16 Configuring the Network Connection

3 Web Interface and Configuration Area

- 18 3.1 Accessing the Web Interface
- 19 3.2 Home Page
- 19 3.3 Log in as a User
- 19 3.4 Accessing the Configuration Area
- 20 3.5 The Configuration Area

4 Basic Configuration

- 21 4.1 General Settings
- 21 General Information, Language and Date
- 23 Configuring the Temperature Sensor
- 24 Setting the System Time
- 26 Configuring the Data Logger
- 27 Deactivating the Discovery Function
- 28 Resetting the Internal Memory
- 29 4.2 Network Configuration
- 29 Ethernet Interface Dynamic Network Configuration
- 31 WLAN Models: WiFi Interface Dynamic and Static Network Configuration

32 WLAN Models: Selecting the Active Network Interface

33 4.3 User Administration

- 34 Creating a New User Account
- 35 Editing a User Account
- 36 Removing a User
- 37 Deactivating the Anonymous User

5 Configuring Alerts

- 38 5.1 Basic Alert Configuration
- 39 Alerts and Dead-band
- 39 Alert Delays
- 40 Variation Alerts
- 41 Responding to Alerts
- 42 5.2 Configuring Alerts
- 42 Temperature Alerts
- 44 TH and THP Models: Humidity Alerts
- 46 TH and THP Models: Dew Point Alerts
- 47 THP Models: Pressure Alerts

6 Configuring the Interfaces

- 49 6.1 The web Interface
 49 Basic settings for the web interface Configuring the Graph
 51 6.2 The Email Interface
- 51 Managing Email Accounts
- 54 Managing Email Recipients
- 58 Email Templates
- 59 Event Descriptions

60 6.3 Cloud Services

- 60 Exporting Data to dweet.io
- 61 Exporting Data to ThingSpeak
- 62 Exporting Data to Xively

63 6.4 Modbus/TCP

- 63 Activating Modbus/TCP
- 64 6.5 SNMP
- 64 General Data
- 64 Activating SNMP
- 65 Activating SNMP Traps
- 66 Downloading the MIB
- 66 6.6 Syslog
- 67 6.7 Signalers
- 67 Optical Signals
- 68 Acoustic Signals

7 Data Access

69 7.1 Web Interface

- 69 Viewing Current Values and Alerts
- 70 Viewing Recent Sensor Events
- 70 Viewing Logged Data
- 72 Exporting Data
- 73 Embedding Graphs Into Other Sites
- 74 7.2 Data Access Via the Cloud
- 74 7.3 Mobile Apps
- 75 7.4 The HTTP Interface
- 75 Exporting Current Values
- 78 Exporting Logged Values
- 80 TLS and User-login
- 80 Application Examples

8 Maintenance, Tips and Troubleshooting

81 8.1 Reboot 81 Soft Boot

- 81 Cold Boot
- 82 8.2 Saving the Configuration
- 82 Exporting the Configuration
- 82 Restoring the Configuration
- 83 8.3 Resetting the Configuration
- Resetting the Configuration Via the Web InterfacePerforming a Hardware Reset

85 8.4 Firmware-Updates

- 85 Installing Firmware Images
- 86 Activating a Firmware Image
- 86 Activating an Alternate Firmware Image

88 8.5 Changing the Battery

- 89 Opening the Casing
- 89 Changing the Battery
- 90 8.6 Troubleshooting

9 Appendix

- 91 9.1 Drill Templates
- 92 9.2 Specifications
- 92 Querx TH
- 93 Querx THP
- 95 Querx WLAN TH
- 97 Querx PT100 / Querx PT1000
- 98 Querx WLAN PT100 / Querx WLAN PT1000
- 99 Sensor Details
 - TH Models: Temperature Sensor

THP Models: Temperature Sensor

TH Models: Humidity Sensor

THP Models: Humidity Sensor

THP Models: Pressure Sensor

Inaccuracies in Extreme Conditions

Calculating the Dew Point

- 102 9.3 Conformity
- 103 9.4 Sensor Calibration
- 104 9.5 Modbus Registers
- 105 9.6 SNMP Object Identifiers
- 105 9.7 The Measuring and Data-Logging Processes
- 105 9.8 Supported Export Data Formats
- 106 9.9 Technical Support
- 106 9.10 Notes on Storage
- 106 9.11 Environmentally Appropriate Disposal
- 107 9.12 Manufacturer and Contact Information
- 107 9.13 Disclaimer

1 Introduction

	The Querx product line encompasses smart sensors that gather and monitor temperature-, humidity- and air- pressure-values.
	This user manual will tell you how to configure, use and maintain the network-compatible devices.
Querx online	Current and further information on the Querx range of products can be found at www.egnite.de and sensors.egnite.de .
1.1 Safety Notes	
	Please read this user manual carefully and take note of the following safety notifications, in order to minimize the risk of damage or injury.
Intended purpose	Querx is intended to monitor and analyze climate data and make this data available via various interfaces.
	Any other use of the devices is considered contrary to the designated use. The manufacturer takes no responsibility for consequences resulting out of any application that is contrary to the designated use.
Danger of death caused by electrical shocks	Please follow these safety notes, in order to minimize the risk of electrical accidents:
	 Only use the device, cables and power supply in faultless condition.
	 Disconnect the device from the power source before maintenance.
	Do not manipulate the device or its accessories.
	Only let qualified personnel carry out maintenance work.

Do not submerge the device in water or any other liquid.

1.2 Symbols

The following symbols will be used throughout this manual:

Danger Indicates possible danger of injuries.
--

Attention

Information

Indicates issues that can damage the device.

Points out helpful hints and tips.

1.3 About Querx

Querx sensors gather climate data and make it accessible via network-interfaces. If limit values are exceeded, an alert function automatically sends notifications via email (TLS / StartTLS), SNMP and Syslog.

The integrated data logger can track 36,864 (THP), 73,728 (TH / PT), or 4 Million (WLAN) entries. Depending on the rate at which the measurements are saved, Querx THP can thus save the data of 25 days (1 entry / min) to 4.2 years (1 entry / h). For Querx TH and PT these figures are 51 days and 4.2 years respectively, for the WLAN models they are 7.5 years and 350 years.

The gathered values are displayed in an interactive graph on the web-interface. The data can additionally be exported in various formats or accessed via an HTTP-interface.

Querx can be connected to the internet of things, using cloud services, making data accessible globally via the web and apps.

SNMP makes it possible to integrate the device into networkmanagement solutions, Modbus/TCP allows for the application in industrial process control (SCADA). Status-, error- and alert-notifications can also be forwarded to a Syslog-server.

1.3.1 Querx at a Glance

Querx TH Querx THP Querx PT

- 1. Reset button
- 2. Status LED
- 3. Sensor-cable
- 4. Micro-USB socket for power supply
- 5. Link LED
- 6. RJ45-socket for Ethernet connection
- 7. Network-activity LED

Querx WLAN TH Querx WLAN PT

- 1. WiFi antenna
- 2. Button (currently without function)
- 3. Status LED
- 4. Reset button
- 5. Sensor-cable
- **6.** Micro-USB socket for power supply
- 7. Link LED
- 8. RJ45-socket for Ethernet connection
- 9. Network-activity LED

1.3.2 Features

- Stand-alone device, no additional computer or software required for operation
- Notifies you via e-mail, SNMP-trap and Syslog if limit values are exceeded
- Data logger with a capacity of 36,864 (Querx THP), 73,728 (Querx TH and PT) or 4 million (WLAN models) entries; equivalent to at least 25 days (Querx THP), 51 days (Querx TH and PT) or 7.5 years (WLAN models) at a rate of one entry per minute
- Data export in the CSV-, JSON- and XML-formats
- Current and logged values can be accessed via various interfaces
- Encrypted e-mails (StartTLS / TLS)
- Cloud-connectivity for global data access
- Compact footprint

1.3.3 Possible Application Areas

- Server room monitoring
- Pharmacies
- Hospitals
- Food hygiene
- Property monitoring
- Automated buildings
- Preventive stock conservation in museums, archives and warehouses
- Determining the cause of mould

1.3.4 Ships With

Ouerx TH	Querx TH Set (item number EGN600114)
	 Querx TH with integrated temperature- and humidity- sensors
	Ethernet cable
	 Micro-USB cable
	 USB power adapter with interchangeable plugs for UK, EU, US and AU outlets
	CD with software and documentation
	Querx TH (item number EGN 600214)
	 Querx TH with integrated temperature- and humidity- sensors
Querx THP	Querx THP Set (item number EGN601216)
	 Querx THP with integrated temperature-, humidity- and pressure-sensors
	Ethernet cable
	 Micro-USB cable
	 USB power adapter with interchangeable plugs for UK, EU, US and AU outlets
	CD with software and documentation
	Querx THP (item number EGN 601116)
	 Querx THP with integrated temperature-, humidity- and pressure-sensors
Querx PT	Querx PT100 Set (item number EGN600414)
x	Querx PT 100
	Plain Pt100-sensor without pocket sleeve
	Ethernet cable
	 Micro-USB cable
	 USB power adapter with interchangeable plugs for UK, EU, US and AU outlets

CD with software and documentation

	Querx PT100 (item number EGN600514)
	Querx PT 100
	Plain Pt100-sensor without pocket sleeve
	Querx PT1000 Set (item number EGN600714)
	Querx PT 1000
	Plain Pt1000-sensor without pocket sleeve
	Ethernet cable
	Micro-USB cable
	 USB power adapter with interchangeable plugs for UK, EU, US and AU outlets
	CD with software and documentation
	Querx PT1000 (item number EGN600814)
	Querx PT 1000
	Plain Pt1000-sensor without pocket sleeve
Querx WLAN TH	Querx WLAN TH Set (item number EGN601115)
× ·	 Querx WLAN TH with integrated temperature- and humidity-sensors
	 WiFi antenna
	Ethernet cable
	 Micro-USB cable
	 USB power adapter with interchangeable plugs for UK, EU, US and AU outlets
	CD with software and documentation
	Querx WLAN TH (item number EGN601215)
	 Querx WLAN TH with integrated temperature- and humidity-sensors
Ouerx WLAN PT	Querx WLAN PT100 Set (item number EGN601315)
-	Querx WLAN PT 100
	 WiFi antenna
	Plain Pt100-sensor without pocket sleeve

- Ethernet cable

Introduction

- Micro-USB cable
- USB power adapter with interchangeable plugs for UK, EU, US and AU outlets
- CD with software and documentation

Querx WLAN PT100 (item number EGN601415)

- Querx WLAN PT 100
- WiFi antenna
- Plain Pt100-sensor without pocket sleeve

Querx WLAN PT1000 Set (item number EGN601615)

- Querx WLAN PT 1000
- WiFi antenna
- Plain Pt1000-sensor without pocket sleeve
- Ethernet cable
- Micro-USB cable
- USB power adapter with interchangeable plugs for UK, EU, US and AU outlets
- CD with software and documentation

Querx WLAN PT1000 (item number EGN601715)

- Querx WLAN PT 1000
- WiFi antenna
- Plain Pt1000-sensor without pocket sleeve

1.3.5 Querx Accessories

The following accessories and spare parts can be purchased from the manufacturer egnite:

- WiFi antenna
- Ethernet cable
- Micro-USB cable
- USB power adapter with interchangeable plugs for UK, EU, US and AU outlets
- DAkkS-calibration certificate (German Accreditation Body)

A selection of Pt100- and Pt1000 sensors is available from shop.egnite.de.

2 First Use

2.1 Before First Use

If the device's temperature differs from the ambient climate, it should be left to acclimatize before setup.

In this case, wait for approximately two hours before connecting Querx to the power supply.

Attention

Temperature differences between the smart sensor and its surroundings can lead to condensation, damaging the device.

Information

Temperature differences between the smart sensor and its surroundings can lead to inaccurate measurements.

2.2 Mounting the Sensor

Querx sensors can be mounted using the latches on the case. They can alternatively be mounted using zip-ties to tie them to piping, for instance.

Please take note of the following points when mounting the device:

- Querx is designed for indoor use.
- Do not mount Querx in locations that are directly exposed to sunlight.
- TH and THP Models: The device should be exposed to a sufficient airflow. Measurements can be made in still air, but the results for humidity will be falsified.
- Do not mount Querx with the sensor cable pointing upward. The cable should point downward or toward either side of the device. The device should not be mounted in such a way, that the sensor cable is located above the casing.

2.3 Model PT: Connecting the Sensor Cable

The Querx PT models support 2-, 3- or 4- wire Pt100 or Pt1000 sensors. Their color coding can vary depending on the underlying standards.

You will require the following tools, in order to connect a sensor.

- A tool with a fine tip, e.g. a fine screwdriver or a pair of tweezers
- A biro
- A magnifying glass if necessary

2.3.1 Connecting a Sensor

Two DIP switches located above the terminals for the cable cores are used to select whether the sensor is connected to Querx PT using two, three or four wires.

		RTD-OR RTD-
4-wire Sensor	3-wire Sensor	2-wire Sensor

- **1.** The above illustrations tell you which switch position your sensor requires.
- **2.** Use a tool with a fine tip to set the DIP switches to the required position. If necessary, use a magnifying glass.
- **3.** Proceed to connect the individual wires to the terminals as displayed in the images.

Information

It might be that none of the displayed wire colors correspond with your sensor, depending on the standard underlying the sensor. In this case, please consult the data sheet provided by the manufacturer.

2.3.2 Mounting Individual Wires

- **1.** Depress the fixture corresponding with the terminal to which you want to connect the wire.
- **2.** Insert the core into the terminal.
- **3.** Release the fixture.
- **4.** Test the connection by pulling on the cable with minimal force.

In order to remove the cable, depress the fixture again and pull the cable out.

2.4 Establishing the Network Connection

Connect Querx to your network or directly to the computer you intend to use to configure the device, using a network cable.

2.5 Power Supply

 Prepare the power adapter by inserting the plug that is used in your country into the guide rail. An audible click indicates that the connection has been made.

Now connect Querx to the power adapter using a micro-USB cable and plug the power supply into a socket. The Querx status-LED will now light up yellow.

Danger

Never use the device with a defective power adapter! Risk of death from electrical shock!

Querx can alternatively be connected to a free USB-Port, if no free power outlet is available.

2.6 Network Configuration via DHCP

Access the integrated web-interface via LAN, in order to configure Querx.

The network can be configured automatically, using DHCP. The status-LED will light up yellow if the device has received valid data.

The LED will flash yellow if a network error occurs. In this case, check that all wires are connected correctly.

Should the problem persist, talk to your network administrator or connect the device to your computer directly.

2.7 Manual Network Configuration

An Ethernet connection needs to be established, in order to configure Querx. This initial connection is normally configured automatically, which will let you access the device as described in chapter 3.1 *Accessing the Web Interface*. The network connection will need to be configured manually, if your network does not support DHCP, or if the computer you wish to use for the configuration does not support mDNS.

Information

The steps detailed in the following section are not required by most users. Please continue reading at chapter 3 *Web Interface and Configuration Area* and chapter 4 *Basic Configuration*.

2.7.1 Installing Device Discoverer

The **Device Discoverer** application can be found on the CD-ROM included in the package. It can also be downloaded from sensors.egnite.de. The application will help you set up Querx.

- 1. Open the **Device Discoverer** installation file.
- 2. Follow the install wizard's instructions.

2.7.2 Configuring the Network Connection

Start the application **Device Discoverer**.

e De	evice Discoverer						
Devi	ces Edit View						
	Hostname	IP Address	IP Mask		IP Gate	MAC Address	
D	Querx TH	192.168.2.104	255.255.2	1	Configure	B 1	
O					Web interface	Alt+W	
				ø	Discover	F5	
				_			
Edit	etwork configurati	on of selected devi	C.A.				
	ietwork configurati	on or selected devi		_			

1. Right-click the device you wish to configure and click *Configure* in the drop-down menu.

- **1.** Activate the checkbox *Manual configuration*.
- 2. Enter the *IP address*, the *IP mask* and the *IP gate*.
- **3.** Save the changes by clicking *OK*.

- **4.** Querx will apply the settings and then restart. The status-LED will light up yellow. The status-LED will flash green, as soon as the device is operational.
- **5.** Querx is now available on your network and can be accessed as described in chapter 3 Web Interface and Configuration Area.

3 Web Interface and Configuration Area

3.1 Accessing the Web Interface

Access via system name

Querx is accessible via mDNS, using the *system name*. You can later customize this name.

Open your web browser and enter the following URL: http://<system name>.local/

The default system name is querx000000. The six zeros are placeholders for the last six digits of the device's MAC address. The MAC address is printed on the label on the back of your device.

The URL for the example in the illustration is http://querx000000.local/

Access via Bonjour

Querx can be accessed directly from the Safari web browser, using the Bonjour menu.

\land

Information

If you cannot access the web interface, the network settings need to be configured manually. See chapter 2.7 *Manual Network Configuration* for a guide.

3.2 Home Page

The home page shows a graph that displays all the data gathered by Querx. Chapters 6 *Configuring the Interfaces* and 7 *Data Access* will help you configure how data is displayed and exported from the interface

3.3 Log in as a User

If you have set up users and assigned access rights to them, you will first need to log into the device.

The button that lets you log in users and access the configuration screen is located in the top right area of the home page.

- **1.** Click *Login*.
- **2.** Enter the user name into the input field *User* and the password into the input field *Password*.
- **3.** Click *OK*.

The default settings do not include any password-protected users. Chapter 4.3 *User Administration* describes how to create and manage users.

3.4 Accessing the Configuration Area

Enter the configuration area.

1. Click the button *Configuration* in the top right screen area.

3.5 The Configuration Area

You are now viewing the home page of the configuration area. You can change all the device's settings from here.

1. Setup menu

Navigate to all the setup options from this menu.

2. Settings

The middle area lets you change the corresponding settings.

3. Help section

The section on the right of the screen displays short explanations of all the parameters that can be found on each page.

4 Basic Configuration

4.1 General Settings

The following settings need to be configured for Querx to function correctly.

4.1.1 General Information, Language and Date

The page System / General lets you enter general information on the device.

The system name identifies the device whenever it sends alarms and when using M2M interfaces. It also serves as the host name which can be used to access Querx via a web browser (cf. section 3.1 *Accessing the Web Interface*).

The *contact* and *location* parameters can be retrieved via SNMP (cf. section 6.5 *SNMP*).

The language selection lets you set the language the web interface is displayed in. The *date format* field is used to select the format in which calendar dates are displayed in the web interface and in exported files.

	General	
System name	egnite	
Contact		2
System location		-3
	Localization	
Language	Localization English	÷ •4
Language Date format	Localization English DD.MM.YYYY	÷ -4 ; -5

- **1.** Enter the device's system name in the input field *System name*.
- **2.** Enter the responsible contact person into the input field *Contact*, if using SNMP.
- **3.** Enter the device's location into the input field *System Location*, if using SNMP.

- **4.** Select the *Language* in which the web interface is to be displayed.
- **5.** Select the *Date format* for the web interface and exported files.
- 6. Click *Save* to apply your changes.

4.1.2 Configuring the Temperature Sensor

	Temperature sensor
Sensor name	Temperature
Sensor type	2/4-wire sensor
	3-wire sensor
Filter	• 50Hz filter
	60Hz filter
Unit	Celsius
	• Fahrenheit
	Kelvin
	Threshold alerts
Alert delay	0
Lower limit	-200.0
Upper limit	750.0
Dead-band	0.0
	Menietiene elente
	variation alerts
Dropping values	Enable
Value	950.0
Time	10
Rising values	Enable
Value	950.0
Time	10
4-	✓ Save ¥ Cancel

Enter the page *Sensors / Temperature* in the configuration area, in order to configure the temperature sensor.

- **1. PT Models:** Select whether you are going to use a 2-. 3- or 4-wire sensor in the input field *Sensor type*.
- **2. PT Models:** Set the *Filter* to the mains frequency used in your country. In Europe this is 50 Hz.
- **3.** Enter the physical *Unit* which you want Querx to use by selecting ° *Celsius*, ° *Fahrenheit* or *Kelvin*.
- 4. Click *Save* to apply your changes.

4.1.3 Setting the System Time

Open the page System / Time.

Date	Date and time
Time	11:16:25
	Set time manually
	Set time zone
Time zone	(GMT+01:00) Amsterdam, Berlin, 😫 -1
2 DST	Auto Auto
	In effect • B
	Set NTP server
NTP server	pool.ntp.org
3-	Save Sync NTP Cancel

First, the time zone needs to be selected:

- **1.** Select the correct time zone for your country from the drop down menu *Time zone*.
- 2. Now select the settings for daylight saving time.
 - A. Select Auto in the DST settings, if your country uses daylight saving time and the clocks are changed on the last Sundays of March and October.
 - B. Deactivate the setting Auto, if your country uses daylight saving time but the clocks are not changed on the last Sundays of March and October. In this case, you will need to manually select whether daylight saving time is currently in effect, whenever the clocks are changed.
- **3.** Click *Save* to apply your changes.

Information

The following settings are recommended for users in the UK: Time zone: (GMT +00:00) Greenwich Mean Time: Dublin, Edinburgh, Lisbon, London) DST: automatic The settings for users in the US depend on the time zone you are in.

\wedge

Information The following settings are recommended for users in central Europe:Time zone: (GMT +01:00) Amsterdam, Berlin [...] DST: automatic

Updating date and time via the network

The automatic configuration of date and time via SNTP is advisable if the device is connected to the internet, or an NTP server is accessible on the local network.

	Set NTP	server		
NTP server	pool.ntp.o	org		
3-	✓ Save	Sync NTP	* Cancel	
		2		

- 1. Enter an *NTP-server's* address.
- 2. Click *Sync NTP* to update date and time.
- 3. Click *Save* to apply your changes.

Information

If a valid NTP-server is entered, time and date are automatically updated once an hour.

Setting time and date manually

Time and date can also be set manually, if no NTP-server is available. Querx includes a battery backed real-time clock, which lets it keep time if a power shortage should occur.

	Date and time
	Date and time
Date	12.12.2016
Time	11:16:25
	Set time manually
	_

1. Click Set time manually.

	Set time
Date	12.12.2016
Time	10:40:11
3-	✓ Save ► Sync PC ¥ Cancel
	2

- Type the values into the input fields *Date* and *Time*. Please enter these in the format which you selected on the page *System / Basic* settings.
- Alternatively, you can synchronize the date and time settings with the PC you are using to configure the device. Simply click *Sync PC* to do so.
- 3. Click *Save* to apply your changes.

4.1.4 Configuring the Data Logger

Querx features an integrated data logger that tracks the following data in configurable time intervals:

- Peak, minimum and average temperature values
- TH and THP models: Peak, minimum and average humidity values
- THP models: Peak, minimum and average pressure values

Querx THP can save up to 36,864 entries;. Querx TH and PT have a capacity of 73,728 entries. The WLAN models can record 4 million entries. This means that Querx THP can store the data of 25 days when logging one entry per minute. Querx TH and PT can track data for 51 days and the WLAN models can record data for 7.5 years, when using the same settings. Data compression can be activated, in order to increase the timespan that can be logged. If compression is activated, entries are only saved if any change has occurred since the last entry.

The memory is designed as a ring memory. If its maximum capacity is reached, the oldest entries will be overwritten.

	Memory	
Data logger: Used data memory:	233d 20h 4%	
Logging interval Compression	1 Enable -2	€ -1
3-	Save * Cancel	

- **1.** Set the interval between logged entries by entering the required number of minutes in the input field Logging *interval*.
- 2. If required, activate Compression.
- 3. Click Save to apply your changes.

Information

Data compression can lead to noncritical display errors in the representation of measurements in the diagram.

4.1.5 Deactivating the Discovery Function

In its default state Querx is accessible via the **Discovery Service** in order to facilitate the manual configuration of its network settings using the Device Discoverer. It is advisable to deactivate this service once the device is configured, to increase the system's security. For this purpose, open the page *System / Network*.

- **1.** Deactivate the checkbox *Discovery*.
- 2. Click *Save* to apply your changes.

Information

Querx will no longer be displayed in the **Device Discoverer** if the Discovery Service is deactivated.

4.1.6 Resetting the Internal Memory

Querx starts logging data as soon as the device is taken into operation.

The previously logged data needs to be deleted, in order to start logging data according to the basic settings you have configured.

Open the page Maintenance / Reset.

Reset	
Reboot system	
Reset configuration	
Delete sensor data	

1. Click the button *Delete sensor data*.

	Delete sensor data
1-	✓ Are you sure?Delete all recorded data
2-	Yes No

- 1. Confirm that you wish to delete the data by clicking the checkbox *Are you sure?*
- 2. Click Yes.

Please be patient, as this process can take a little while. Querx will reboot after completion and then restarts logging data.

4.2 Network Configuration

Querx can be connected to a network via an Ethernet LAN cable. The WLAN models can alternatively be connected to WiFi networks.

The Ethernet interface needs to detect a network connection, in order to activate the wired network interface. If no Ethernet connection is detected, or an existing one is disconnected, Querx will activate the WiFi interface.

4.2.1 Ethernet Interface

The factory settings let Querx configure the wired network connection automatically.

Alternatively, the network settings can be configured manually. Manually assigning a static IP-address to the device will make it boot more quickly and also make it accessible at the same IP-address at all times.

Information

Changes to the network settings will only be applied after the device has rebooted.

4.2.1.1 Dynamic Network Configuration

Open the page *System / Network* in the configuration area to select the dynamic network configuration using DHCP or Zeroconf.

Network interfaces	
Interface	MAC
Ethernet	00:06:98:01:1F:7C
WLAN	00:0B:6C:41:EB:47

1. Click the *Edit* symbol next to the entry *Ethernet* to access the settings for this interface.

1- онср	Ethernet setup Obtain IP address automatically
	Set IP address manually
MAC	00:06:98:01:1F:7C
IP address	
Network mask	
Default gateway	
2 DNS server	Obtain DNS server automatically
	Set DNS server manually
referred DNS server	
ernative DNS server:	

- **1.** Select Obtain IP address automatically.
- 2. Choose whether you want to
 - A. Obtain DNS server automatically or
 - **B.** Set DNS server manually.
- 3. Click *Save* to apply your settings.

Information

Changes to the network settings will only be applied after the device has rebooted.

4.2.2 WLAN Models: WiFi Interface

Open the page *System / WiFi* in the configuration area to configure the WiFi interface.

	Wireless LAN
1 -• Wireless	✓ Enable
2 SSID	egnite01
	Choose Network
Encryption	WPA2-PSK-TKIP + -3
Shared Key	•
6-	✓ Save ★ Cancel ► Connect ► 5

- **1.** Click *Activate*, in order to activate the WiFi interface.
- 2. Select a network.
 - **A.** Enter the selected network's SSID manually in the input field *SSID* or
 - **B.** click the button *Select network* to select the network from a list of available wireless networks.
- **3.** Select the method of encryption from the drop down menu *Encryption*.
- 4. Enter the key in the input field *Shared key*.
- **5.** Click *Connect* to test the connection with the entered parameters.
- 6. Click *Save* to apply your changes.

4.2.2.1 Dynamic and Static Network Configuration

Open the page *System / Network* in the configuration area to select the dynamic network configuration using DHCP or Zeroconf.

	Network interfaces	
	Interface	MAC
	Ethernet	00:06:98:01:1F:7C
1-	WLAN	00:0B:6C:41:EB:47

1. Click the *Edit* button next to the entry *WiFi*.

Proceed as described in section 4.2.1 *Ethernet Interface*.

4.2.3 WLAN Models: Selecting the Active Network Interface

Querx WLAN switches between the Ethernet and WiFi interfaces according to whether it can detect a wired Ethernet connection.

If a wired network connection is detected, Querx WLAN activates the Ethernet interface. The device will activate the WiFi interface if no wired connection is detected or an existing connection is disconnected.

The device needs to reboot, in order to change the active network interface. This process may take a little while.

The status LED indicates which network interface is currently active. The LED flashes

- green when the Ethernet interface is active
- *blue* when the WiFi interface is active.

4.3 User Administration

The factory settings include an anonymous user, whose access is not password protected. Three additional, password-protected users can be set up. The following access privileges can be assigned to these users:

- Deactivated: The user can not access the device.
- Read data: The user can read the data tracked by Querx.
- Read data / Read config: The user can read the data tracked by Querx and the device's settings.
- Read data / Write config: The user can read the data tracked by Querx and the device's settings. He can also change the settings.

The factory settings do not include a password-protected user, making the device's settings accessible to any user on the network. Therefore, it is advisable to set up users with password-protected access and then restrict the anonymous user's access.

4.3.1 Creating a New User Account

Open the page *System / Users* in the configuration area to change the user settings.

	Users	
	User name	Group
	Anonymous	Read data / Write config
1 -•		Disabled
+		Disabled
+		Disabled

1. Click the *Add* button next to an empty line in the section *Users*.

User name	
Password	
	••••
Group	Disabled
	Read data
2-	Read data / Read config
	Read data / Write config
8-	✓ Save ≭ Cancel

- 1. On the following page, enter a user name in the input field *User name* and a password in the input field *Password*.
- **2.** Assign a *Group* of access rights to the user.
- **3.** Click *Save* to apply your settings and create the user account.

4.3.2 Editing a User Account

X

	Users	
_	User name	Group
1 🔊	Anonymous	Read data / Write config
×	Admin	Read data / Read config
+		Disabled
+		Disabled

Open the page System / Users in the configuration area.

1. Click the *Edit* symbol in the section *Users*.

User name	Admin	
Password	••••	

Group	Disabled	
	Read data	
	Read data / Read config	
	 Read data / Write config 	

- **1.** Make the required changes.
- 2. Click *Save* to apply your changes.

Information

The access rights can only be edited if at least one further user with writing access has been set up.

4.3.3 Removing a User

Open the page System / Users in the configuration area.

1. Click the *Remove* button next to the user you wish to remove.

	Remove user
User name	Admin
Group	Read data / Read config
0-	Yes No

1. Confirm that you wish to remove this user by clicking *Yes*.

Information

The access rights can only be removed if at least one further user with writing access has been set up.

4.3.4 Deactivating the Anonymous User

Once you have set up a user with writing access, you can restrict the anonymous user's access rights or deactivate this user entirely. To do this, open the page *System / Users* in the configuration area.

	Users	
	User name	Group
1-	Anonymous	Read data / Write config
×	Admin	Read data / Read config
+		Disabled
+		Disabled

1. Click the *Edit* button next to the user *Anonymous*.

Edit user
User name Anonymous
Group Oisabled
1 Read data
Read data / Read config
Read data / Write config
2 - V Save Cancel

- In order to restrict anonymous access to Querx entirely, assign the group of access rights *Disabled* to the user. To allow all network members restricted access to Querx, select the required group of access rights.
- 2. Click *Save* to apply your changes.

5 Configuring Alerts

Querx can notify you of alerts via email, SNMP-trap and Syslog whenever defined value limits are exceeded.

5.1 Basic Alert Configuration

Querx can notify you of the following critical ambient conditions:

- Temperature above upper limit value
- Temperature below lower limit value
- Temperature rising too quickly
- Temperature falling too quickly

The **TH and THP models** additionally support the following alerts:

- Humidity above upper limit value
- Humidity below lower limit value
- Humidity rising too quickly
- Humidity falling too quickly
- Dew point above upper limit value
- Dew point below lower limit value

The **THP models** additionally support the following alerts:

- Pressure above upper limit value
- Pressure below lower limit value
- Pressure rising too quickly
- Pressure falling too quickly

Information

Alerts are only triggered when values rise above or fall below the limit values. They are not triggered if the limit values are merely reached.

5.1.1 Alerts and Dead-band

A dead-band value can be defined, in order to avoid the repetition of alerts that are based on limit transgressions.

If the dead-band feature is activated, a value that has triggered an alert will have to return towards its normal state by the dead-band value, before being able to trigger a further alert.

The minimum temperature is set to **15°C** in the example depicted above. The dead-band is set to **5°C**.

An alert is triggered if the temperature falls below the minimum temperature (1). If the temperature falls below this value again after having returned towards its normal state by less than the value assigned to the dead-band, no further alert is triggered (2). A further alert is only triggered if the value has returned towards its normal state by more than the value of the dead-band (3) and then falls back down below the minimum value (4).

5.1.2 Alert Delays

A delay can be configured for alerts that are based on limit value transgressions, if you wish to accept short-term fluctuations. This can, for instance, be useful to allow for a tolerated decline in temperature during ventilation.

Configuring Alerts

This value determines how long a limit needs to be continuously transgressed, until an alert is triggered.

In this example, a delay of two minutes is configured. The limit value is exceeded at 1:30 (1). However, the device only triggers an alert once the value is exceeded for the entirety of the configured delay, in this case two minutes (2).

Please be aware that the dead-band also applies to the delay. This means that the value needs to return towards its normal state by the dead-band value during the delay time, in order to cancel the alert. In this example the sensor would therefore need to measure a value below 25 °C within two minutes of the first transgression, in order to cancel the alert.

5.1.3 Variation Alerts

Querx can notify you if values rise or sink more quickly than usual. In order to set this type of alert up, you will need to enter a value for the maximal accepted fluctuation between the highest and lowest values. Additionally, a value for the timespan, within which the specified fluctuation value is not to be exceeded, is required.

These alerts remain active until the values are once again stable.

Individual values can be entered for falling and rising temperatures.

The diagram depicted above shows the way Querx reacts when a window is opened. The maximal rate at which the temperature may drop is set to 5 °C and the timespan is set to 30 minutes.

The sensor measures a temperature of 30 °C at 0:20 (1). A window is opened at 0:50, causing the temperature to abruptly fall to 20 °C. The device registers a drop in temperature of more than 5 °C within the last 30 minutes, triggering an alert as soon as the temperature falls below 25 °C (2).

The device notices that the difference between minimal and maximal value within the last 30 minutes (3) is less than 5 °C by approximately 1:30 (4), causing it to deactivate the alert.

5.1.4 Responding to Alerts

Querx can perform various actions in response to triggered alerts, in order to notify you of critical conditions.

The various options are described in detail in chapter 6 *Configuring the Interfaces.*

5.2 Configuring Alerts

5.2.1 Temperature Alerts

Alerts for limit exceedances

Open the page Sensors / Temperature.

Alort dolay	0	
Alert delay	U	
Lower limit	-15.0	2
Upper limit	45.0	3
Dead-band	0.0	
	Menietien elemen	
	variation alerts	
Dropping values	✓ Enable	
Value	4.0	
Time	10	
Rising values	✓ Enable	
Value	4.0	
Time	10	
A .	A Canad	

- 1. Please enter the number of seconds after which an alert is triggered in the input field *Alert delay*, if you wish to allow for short-term transgressions.
- **2.** Enter the *Lower limit* that will trigger an alert if values drop below this threshold.
- **3.** Enter the *Upper limit* that will trigger an alert if values rise above this threshold.
- Enter a reasonable value for the *Dead-band*, for instance
 2.
- **5.** Click *Save* to apply your changes.

Variation alerts

The configuration of variation alerts requires the specification of two values each for dropping and rising temperatures.

ropping values	✓ Enable ●	(]
Value	4.0	2
Time	10	•-3
Rising values	✔ Enable	
Value	4.0	-4
Time	10	

- **1.** First, activate variation alerts by clicking *Enable*.
- **2.** Enter the *Value* by which the temperature is maximally permitted to drop.
- **3.** Enter the *Time* within which the temperature is maximally permitted to drop by the previously specified value.
- 4. Repeat steps 1 3 for *Rising values*.
- **5.** Click *Save* to apply your changes.

5.2.2 TH and THP Models: Humidity Alerts

Alerts for limit exceedances

Information

Please make sure that you use a decimal point in order to separate the decimal digits when entering all the following values.

Open the page *Sensors / Humidity* in the configuration area to configure humidity alerts.

	Threshold alerts	
Alert delay	0	
Lower limit	0	·2
Upper limit	100	⊷ 3
Dead-band	0	
	Variation alerts	
Dropping values	✓ Enable	
Value	100	
Time	10	
Rising values	✓ Enable	
Value	100	
Time	10	
5	✓ Save ¥ Cancel	

- Please enter the number of seconds after which an alert is triggered in the input field *Alert delay*, if you wish to allow for short-term transgressions.
- **2.** Enter the *Lower limit* that will trigger an alert if values drop below this threshold.
- **3.** Enter the *Upper limit* that will trigger an alert if values rise above this threshold.
- Enter a reasonable value for the *Dead-band*, for instance
 2.
- 5. Click *Save* to apply your changes.

Variation alerts

The configuration of variation alerts requires the specification of two values each for dropping and rising humidity.

Dropping values	✓ Enable ●		
Value	100	2	
Time	10	-3	
Rising values	✓ Enable		
Value	100	-4	
Time	10		

- **1.** First, activate variation alerts by clicking *Enable*.
- **2.** Enter the *Value* by which the humidity is maximally permitted to drop.
- **3.** Enter the *Time* within which the humidity is maximally permitted to drop by the previously specified value.
- 4. Repeat steps 1 3 for *Rising values*.
- 5. Click *Save* to apply your changes.

5.2.3 TH and THP Models: Dew Point Alerts

Alerts for limit exceedances

Information

Please make sure that you use a decimal point in order to separate the decimal digits when entering all the following values.

Dew point alerts are configured on the page Sensors / Dew point.

Sensor name	Dew point	
	Threshold alerts	
Alert delay	0	1
Lower limit	0.0	·2
Upper limit	26.0	-3
Dead-band	0.0	·
5-•	✓ Save ¥ Cancel	

- Please enter the number of seconds after which an alert is triggered in the input field *Alert delay*, if you wish to allow for short-term transgressions.
- **2.** Enter the *Lower limit* that will trigger an alert if the dew point drops below this threshold.
- **3.** Enter the *Upper limit* that will trigger an alert if the dew point rises above this threshold.
- **4.** Enter a reasonable value for the *Dead-band*, for instance 2.
- 5. Click *Save* to apply your changes.

5.2.4 THP Models: Pressure Alerts

Alerts for limit exceedances

Information

Please make sure that you use a decimal point in order to separate the decimal digits when entering all the following values.

Open the page *Sensors / Pressure* in the configuration area to configure humidity alerts.

Alart dalay	0	
Alert delay	0	
Lower limit	900.0	2
Upper limit	1300.0	⊷3
Dead-band	0.0	← 4
		-
	Variation alerts	
Dropping values	✓ Enable	
Value	400.0	
Time	10	
Rising values	✓ Enable	
Value	400.0	
Time	10	
6-	✓ Save ¥ Cancel	

- Please enter the number of seconds after which an alert is triggered in the input field *Alert delay*, if you wish to allow for short-term transgressions.
- **2.** Enter the *Lower limit* that will trigger an alert if values drop below this threshold.
- **3.** Enter the *Upper limit* that will trigger an alert if values rise above this threshold.
- **4.** Enter a reasonable value for the *Dead-band*, for instance 2.
- 5. Click *Save* to apply your changes.

Variation alerts

The configuration of variation alerts requires the specification of two values each for dropping and rising humidity.

	Threshold alerts	
Alert delay	0	
Lower limit	900.0	
Upper limit	1300.0	
Dead-band	0.0	
	Variation alerts	_
Dropping values	✓ Enable ●	-0
Value	400.0	⊷−2
Time	10	⊷ 3
Rising values	✓ Enable	
Value	400.0	-4
Time	10	
5	✓ Save ¥ Cancel	-

- **1.** First, activate variation alerts by clicking *Enable*.
- **2.** Enter the *Value* by which the humidity is maximally permitted to drop.
- **3.** Enter the *Time* within which the humidity is maximally permitted to drop by the previously specified value.
- 4. Repeat steps 1 3 for *Rising values*.
- **5.** Click *Save* to apply your changes.

6 Configuring the Interfaces

Querx offers a number of different interfaces that can be used to access the measured values and inform you of alerts.

6.1 The web Interface

This section describes the basic configuration of the web interface and the diagram on the home page.

6.1.1 Basic settings for the web interface

Open the page Interfaces / Web in the configuration area.

	Web interface	
Refresh rate	1 second	♦ ⊷1
Session timeout	600	·2
HTTP port	80	⊷ 3
HTTPS	Enable	4
HTTPS port	443	⊷ 5

- **1.** Enter the rate at which the dynamic values (e.g. the temperature) are to be updated in the web interface in the *Refresh rate* input field.
- 2. Enter the time after which an inactive user is logged out in the *Session timeout* input field.
- **3.** Enter the *HTTP port* that is to be used for the unencrypted web interface (the standard port is 80).
- **4. WLAN models:** Click *Activate* to use *HTTPS* to encrypt the transmission of the web interface.
- **5.** WLAN models: Enter the *HTTPS port* that is used to access the encrypted web interface.

6.1.1.1 Configuring the Graph

2	Color Auto zoom Minimum	Tempera Red ✓ Enable	ature chart	: -1)
	Maximum	85,0	C °C		
		Humidit	ty chart		
3	Color	Blue		\$	
	Auto zoom	🖌 Enable			
	Minimum	0	© %RH		
	Maximum	100	© %RH		
		Pressur	e chart		
4	Color	Green		\$	
	Auto zoom	🖌 Enable			
	Minimum	900,0	🗊 hPa		
	Maximum	1300,0	🗊 hPa		
	5-	✔ Save	# Cancel		

- **1.** Select a *Color* for the temperature chart.
- **2.** Select the value range displayed in the diagram:
 - **A.** Enable *Auto zoom*, to let Querx automatically adjust the displayed range to the tracked values.
 - **B.** Alternatively, static *Minimal* and *Maximal* values can be assigned to the displayed value range.
- **3.** TH and THP models: Repeat steps 1 2 for the humidity curve.
- **4. THP models:** Repeat steps **1 2** for the pressure curve.
- 5. Click *Save* to apply your changes.

6.2 The Email Interface

Querx can inform up to four email recipients of occurring alerts. Two email accounts from which the notifications are sent can be set up.

6.2.1 Managing Email Accounts

At least one email account needs to be set up, in order to send emails alerts. Setting a further account up makes sense if

- you wish to have a backup account in case a mail server is not accessible, or
- your network setup distinguishes between internal and external emails.

Adding an email account

Open the page *Interfaces / Email* in the configuration area.

	Email accounts	
9	Email	Mail server
+		
+		

1. Click the *Add* symbol next to a blank line in the email section.

	Edit email accounts
Sender	querx@egnite.de
SMTP server	smtp.egnite.de
Port	587 -3
Authentication	<
User name	querx@egnite.de
Password	
0-	✓ Save Cancel ► Test ← 6

- On the next page, enter the mail address for the account you wish to send email alerts from in the input field *Sender*.
- **2.** Enter the hostname or IP-address for the mail-server used by the mail account in the input field *SMTP server*.

- **3.** Enter the *Port* used by the email account.
- **4.** If your mail account is password protected, activate the checkbox *Authentication*.
- **5.** Enter the username in the input field *Username* and the password in the input field *Password*.
- 6. Click the button *Test* to check your settings. If the test is successful, the button will turn green. If any entries are wrong, the corresponding field will be highlighted in red. Where necessary, correct the data and click *Test* again.
- 7. Click *Save* to apply your changes.

\triangle

Information

Passwords are not encrypted on the device. Therefore, it is strongly advised that you do not use any email accounts that are used for sending confidential information or, if possible, to create a dedicated account for Querx.

Editing an email account

Open the page Interfaces / Email.

- Email accounts

 Email
 Mail server

 querx@egnite.de
 smtp.egnite.de:587
- **1.** In the section *Email accounts*, click the *Edit* symbol next to the account you wish to edit.

Sender	querx@egnite.de
SMTP server	smtp.egnite.de
Port	587
Authentication	✓
User name	querx@egnite.de
Password	••••
6	

- **1.** Make the required changes on the following page.
- Click the button *Test* to check your settings. If the test is successful, the button will turn green. If any entries are wrong, the corresponding field will be highlighted in red. Where necessary, correct the data and click *Test* again.
- **3.** Click *Save* to apply your changes.

Deleting an email account

Open the page Interfaces / Email in the configuration area.

	Email accounts	
	Email	Mail server
	querx@egnite.de	smtp.egnite.de:587

1. In the section *Email accounts*, click the *Delete* button next to the account you wish to delete.

	Remove email account
Mail server	smtp.egnite.de:587
User name	querx@egnite.de
1	Yes No

1. Confirm that you want to remove the account by clicking *Yes*.

6.2.2 Managing Email Recipients

Adding email recipients

The configured email servers can be used to send email notifications to up to four recipients. You can select which events each recipient is notified of.

Open the page *Interfaces / Email* in the configuration area.

	Recipients
•	Email
+	
+	
+	
+	

1. Click the *Add* symbol next to a blank line in the *Recipients* section.

	Edit recipient	
Email	elert@eqnite.de	
Account	alert@egnite.de	
Account	alternative smtp.egnite.de	-2
	alternative ship.egnite.de	
Notify on	Select all Remove selection	
Temperature	🗹 Too low	
	🗹 Too high	
	Back to normal	
	Dropping too fast	
	Rising too fast	-3
Humidity	✓ Too low	
	🖌 Too high	
	Back to normal	
	Dropping too fast	
	Rising too fast	
Pressure	✓ Too low	
	🖌 Too high	
	Back to normal	
	Dropping too fast	
	Rising too fast	
Dew-point	✓ Too low	
	🗹 Too high	
	Back to normal	
B	V Save X Cancel	- A
	Cave A Calicer Fiest	v

- On the next page, enter a recipient in the input field *Email* and assign the mail *Account* you want to set as the standard account to send notifications from.
- **2.** Select which email account to send emails to this recipient from.
 - **A.** Activate both accounts if you want to use one as a backup account.
 - **B.** If you distinguish between internal and external emails, only activate the required mail server.
- **3.** Select which alerts the recipient is notified of in the *Notify on* section.
- 4. Click *Test* to check your settings.
- 5. Click *Save* to apply your changes.

Editing email recipients

X

Open the page *Interfaces / Email* in the configuration area.

	Recipients
Ŷ	Email
×	alert@egnite.de
+	
+	
+	

1. In the *Recipients* section, click the *Edit* symbol next to the entry for the account you wish to edit.

	Edit recipient	
Email	alert@egnite.de	
Account	✓ querx@egnite.de smtp.egnite.de	
	alternative smtp.egnite.de	
Notify on	Select all Remove selection	
Temperature	🗹 Too low	
	🗹 Too high	
	Back to normal	
	Dropping too fast	
	Rising too fast	-1
Humidity	✓ Too low	
	🖌 Too high	
	Back to normal	
	Dropping too fast	
	Rising too fast	
Pressure	✓ Too low	
	✓ Too high	
	Back to normal	
	Dropping too fast	
	Rising too fast	
Dew-point	✓ Too low	
	🖌 Too high	
	Back to normal	
3-	✓ Save ¥ Cancel ►Test ←	2

- **1.** Make the required changes on the following page.
- 2. Click *Test* to check your settings.
- **3.** Click *Save* to apply your changes.

Deleting email recipients

Open the page *Interfaces / Email* in the configuration area.

	Recipients
Y	Email
×	alert@egnite.de
+	
+	
+	

1. In the *Recipients* section, click the *Remove* symbol next to the entry for the account you wish to delete.

Remove recipient	
Email alert@egnite.de	
Account smtp.egnite.de	
1 - Yes No	

1. Confirm that you want to remove the recipient by clicking *Yes*.

6.2.3 Email Templates

Querx sends email notifications when alerts occur and when the values return to their normal state. Open the page *Interfaces / Email* in the configuration area to configure the format of these email notifications.

	Alert notifications
Subject	\$N \$S \$E -1
Message	\$S \$V\$U
2-	Location: \$L Contact: \$C http://\$I
	n n

- **1.** Enter a *Subject* for the email notifications in the section *Alert notifications*.
- **2.** Enter the contents of the email in the input field *Message*.

You can use the following placeholders in the notifications' subject and main body. The placeholders are dynamically replaced by the current values when notifications are sent.

\$N	Name of the system that triggered the alert
\$S	Name of the sensor that triggered the alert
\$U	The measured value's physical unit
\$1	The device's IP-address
\$L	The device's location
\$V	The value measured by the sensor that triggered the
	alert
\$E	Description of the event
\$D	The date on which the event occurred
\$T	The time at which the event occurred
\$C	The contact person for the device

Enter the event descriptions before saving.

6.2.4 Event Descriptions

You can enter descriptions of occurring events on the page *Interfaces / Email*. These descriptions are also used in the event table (located on the page *Maintenance / Events*) and by Syslog notifications.

	Event description	
Value too low	low	1
Value too high	high	·2
Value back to normal	back to normal	-3
alue dropping too fast	dropping	
Value rising too fast	rising	
Sensor failure	sensor error	6
7→	✓ Save ¥ Cancel	•

- **1.** Enter a description for the event that values fall *below the lower limit*.
- **2.** Enter a description for the event that values *rise above the upper limit*.
- **3.** Enter a description for the event that values *return to their normal state*.
- **4.** Enter a description for the event that values are *falling too quickly*.
- **5.** Enter a description for the event that values are *rising too quickly*.
- **6.** Enter a description for the event that a *sensor failure* occurs.
- 7. Click *Save* to apply your changes.

6.3 Cloud Services

Querx can send measured values to the cloud services ThingSpeak and Xively. This lets you access your data from around the globe and integrate data into your projects, using the programming interfaces provided by these cloud services.

6.3.1 Exporting Data to dweet.io

In order to export data to dweet.io you merely need an active internet-connection for your Querx sensor. The service can be configured at http://dweet.io.

Configuring dweet.io

Open the page Interfaces / Cloud.

Name	QuerxTHP	2
Update rate	1	€-3
Link	Last 5 dweets , Last dweet 🗣	5

- **1.** *Enable* the transfer of data to dweet.io.
- 2. Enter a unique name for your sensor in the *Name* field.
- **3.** Set the *Update rate*, at which the sensor will transmit data sets to dweet.io.
- **4.** Click the button *Test*.
- **5.** You can access the *Last 5 dweets* or the *Last dweet* by clicking the corresponding *Link*.
- 6. Click *Save* to apply your changes.

dweet.io displays the data sets in the following format:

```
{"this":"succeeded","by":"getting","the":"dweets","with":
[{"thing":"QuerxTHP","created":"2016-12-06T09:43:01.458Z","content":
{"Temperature":18,"Humidity":48,"Pressure":1027.7}}]
```

The *Temperature*, *Humidity* and *Pressure* values correspond to the respective measurements.

6.3.2 Exporting Data to ThingSpeak

A ThingSpeak channel is required to export data to ThingSpeak. Such a channel can be created free of charge at http://www.thingspeak.com.

The following data is required to connect Querx to a ThingSpeak channel:

- The channel number for the channel you created
- The field ID for the temperature field on your channel
- TH and THP models: The field ID for the humidity field on your channel
- THP models: The field ID for the pressure field on your channel
- The write API key

Open the page *Interfaces / Cloud* in the configuration area.

	Mingspeak 1
API key	1234567891234567
Channel number	123123123
emperature field ID	1
Humidity field ID	2 -5
Update rate	60 0
Link	123123123
9-	✓ Save ★ Cancel ► Test ► 8

- 1. *Enable* the transfer of data to ThingSpeak.
- 2. Enter the write API key into the input field API key.
- **3.** Enter the channel ID into the input field *Channel number*.
- **4.** Enter the field ID for the temperature field into the input field *Temperature field ID*.
- **5. TH and THP models:** Enter the field ID for the humidity field into the input field *Humidity field ID*.
- **6. THP models:** Enter the field ID for the pressure field into the input field *Pressure field ID*.
- **7.** Enter the interval in which data is to be sent to ThingSpeak in the input field *Update rate*.

Configuring ThingSpeak

- 8. Click Test to send a data set to ThingSpeak to check your settings.
- 9. Click Save to apply your settings.

Your channel ID will appear in the line *Link*, as soon as you have saved your settings. You can open your channel by clicking the link.

6.3.3 Exporting Data to Xively

A Xively feed is required to transfer data to Xively. A Xively feed can be created at http://www.xively.com.

The following data is required to connect Querx to a Xively feed:

- The ID for the feed you want to send the data to
- The API key that is used to write to the feed

Open the page *Interfaces / Cloud* in the configuration area.

- 1. Enable the transfer of data to Xively.
- 2. Enter the write API key into the input field API key in the section Xively.
- 3. Enter your feed's ID in the input field Feed ID.
- 4. Enter the interval in which data is to be sent to Xively in the input field Update rate.
- 5. Click *Test* to send a data set to Xively to test your settings.
- 6. Click *Save* to apply your settings.

The field descriptions for the measured data correspond to the names you entered for the sensors.

Your feed ID will appear in the line *Link*, as soon as you have saved your settings. You can open your feed by clicking the link.

6.4 Modbus/TCP

Querx can transfer data via Modbus/TCP, making it suitable for industrial process monitoring (SCADA) amongst other possible application areas.

An overview of the addressable registers can be found in appendix 9.5 *Modbus registers*. Practical examples of the application of Modbus/TCP can be found on the product page at sensors.egnite.de.

6.4.1 Activating Modbus/TCP

Open the page Interfaces / Modbus in the configuration area.

- **1.** Activate Modbus/TCP by clicking the checkbox *Enable*.
- **2.** If you want to allow changes to the Modbus/TCP configuration, uncheck the checkbox *Write protection*.
- **3.** Click *Save* to apply your changes.

Information

Please note that Querx only supports a single Modbus connection. If you intend to use Querx with several masters, the connection to one master needs to be interrupted, in order to vacate the connection for the other masters.

6.5 **SNMP**

Querx can be integrated into network management systems such as Nagios, OpenNMS or Zabbix via the Simple Network Management Protocol (SNMP). Querx supports SNMPv1.

The most important Object Identifiers (OIDs) can be found in appendix 9.6 *SNMP Object Identifiers*. The Management Information Database (MIB) is saved on the device and can be downloaded from the web interface.

Practical examples of the application of SNMP can be found on the product page at sensors.egnite.de.

6.5.1 General Data

Open the page *System / General* in the configuration area to enter the data concerning the device's system name, contact person and location.

6.5.2 Activating SNMP

Open the page Interfaces / SNMP.

	SNMP agent Fnable -1
Read community	public -2
MIB	Download

- **1.** Activate SNMP by clicking the checkbox *Enable*.
- **2.** Check the *Read community* and make any required changes.
- **3.** Click *Save* at the bottom of the screen to apply your changes.
- **4.** Restart the device via the web interface as detailed in chapter 8.1 *Reboot*.

Information

Please note that Querx needs to reboot after enabling or deactivating the SNMP-agent.

6.5.3 Activating SNMP Traps

	SNMP traps	
Trap receiver		1
ap community	public	·2
Send trap on	Select all Remove selection	_
emperature	🗹 Too low	
	🗹 Too high	
	Back to normal	
	Drops too fast	
	Rises too fast	
Humidity	🗹 Too low	-3
	🗹 Too high	
	Back to normal	
	Drops too fast	
	Rises too fast	
Humidity	🗹 Too low	
	🗹 Too high	
	Back to normal	
	Drops too fast	
	Rises too fast	
Dew-point	✓ Too low	
	🖌 Too high	
	Back to normal	
		_
)	✓ Save X Cancel	

Open the page *Interfaces / SNMP* in the configuration area.

- **1.** Enter the IP-address or hostname for the host who is to receive the SNMP traps in the input field *Trap receiver* in the *SNMP* section.
- 2. Check the *Trap community* and make any required changes.
- **3.** Select which events will trigger SNMP traps in the section *Send trap on*.
- **4.** Click *Save* to apply your changes.

6.5.4 Downloading the MIB

Open the page Interfaces / SNMP in the configuration area.

	SNMP agent
Read community MIB	public Download

 Click the *Download* button next to *MIB* in the *SNMP* agent section to download the Management Information Database.

6.6 Syslog

Open the page *Interfaces / Syslog* to send notifications and error reports to a syslog server.

	Syslog
Syslog server	192.168.192.189
2-	✓ Save ★ Cancel ► Test message

- 1. Enter the *Syslog server's* IP address or hostname.
- **2.** Click *Save* to apply your settings.

The application **Device Discoverer** includes an integrated Syslog server which can receive error reports from Querx. Detailed troubleshooting instructions can be found in the *Services / Tutorials* section at sensors.egnite.de.

6.7 Signalers

Querx is fitted with an LED which can notify you of occurring alerts. The WLAN models additionally feature a tone generator.

6.7.1 Optical Signals

Open the page *Interfaces / Signalers* to configure alerts displayed on the device itself.

	Status LED (normal)	
Blink rate	10	1
Brightness	Bright	≑2
	Status LED (alerts)	-
Brightness	Bright	≑ ⊷3
Temperature Alert	Red	\$4
Humidity alert	Yellow	+5
Pressure alert	Green	÷6
	System and alert sounds	•
Start up	Disabled	\$
Alert	Disabled	\$
Repetition	Enable	
Back to normal	Disabled	\$
Custom sound		
0-	✓ Save ¥ Cancel	

- **1.** Set the number of seconds for the *Rate* at which Querx blinks under normal conditions.
- **2. WLAN models:** Select the LED's *Brightness* under normal conditions.
- **3. WLAN models:** Select the LED's *Brightness* when signaling an alert.
- **4.** Select the LED's *Color* when signaling a temperature alert.
- **5. TH and THP models:** Select the LED's *Color* when signaling a humidity alert. This includes dew point alerts.
- **6. THP models:** Select the LED's *Color* when signaling a pressure alert.
- 7. Click *Save* to apply your settings.
6.7.2 Acoustic Signals

Acoustic signals are only available on WLAN models.

Start up	Disabled	÷ -1
Alert	Disabled	÷2
Repetition	Enable 🕈	3
Back to normal	Disabled	\$4
Custom sound		5
	of Canad	•

- **1.** Select a *Startup* signal sound.
- 2. Select an *Alert* signal sound.
- **3.** Specify whether the signal for alerts is to be *Repeated*.
- **4.** Select a sound to signal that the values are *Back to normal*.
- If desired, specify a personalized signal sound using the "scientific pitch notation". https://en.wikipedia.org/wiki/Scientific_pitch_notation
- 6. Click *Save* to apply your changes.

7 Data Access

Querx offers various interfaces for manual and automated data access.

7.1 Web Interface

The web interface displays current values and alerts. An interactive diagram on the home page additionally lets you view logged data.

7.1.1 Viewing Current Values and Alerts

The current values and alerts are displayed in the upper right corner of the web interface.

The image above shows:

- **1.** an alert (1) for a temperature that has risen above the upper limit
- 2. at a current temperature of 35.6 °C, as well as
- **3.** an alert (**I**)for a humidity value that is falling too quickly
- 4. at a current humidity of 97 %RH
- **5.** an alert (1) for a pressure value that has fallen below the lower limit
- 6. at a current pressure of 1020.6 hPa.

The corresponding symbol is displayed when an alert occurs. The following symbols can be shown:

Alert	Symbol
Value above upper limit	1
Value below lower limit	Ţ
Value rising too quickly	r
Value falling too quickly	
Sensor failure	×

7.1.2 Viewing Recent Sensor Events

The 16 most recent events, such as alerts, values returning to their normal state or sensor failures, can be viewed in the configuration area.

Open the page Maintenance / Events.

	Last events	
Date / Time	Event	Value
4.12.2016 / 09:32:28	B Dew point back to normal	25.8°C
4.12.2016 / 09:31:37	7 Dew point high	31.5°C
4.12.2016 / 09:29:26	Dew point back to normal	25.6°C
4.12.2016 / 09:29:03	B Dew point high	26.4°C
4.12.2016 / 09:23:02	Humidity dropping	50%RH

7.1.3 Viewing Logged Data

The chart on the home page displays the values that have been tracked up until the present moment.

The lines displayed in full color show the logged average values. The lighter areas around the lines represent the minimum and maximum values recorded in the specific timeframe. The horizontal bars represent the limit values at which alerts are triggered. Their width corresponds to the specified dead band. The exact values for a specific time are displayed in the upper right corner (2) when you move the cursor along the graph (1).

Setting the displayed timespan

- **1.** Select the timespan displayed. It can be set to a year, a month or a week.
- **2.** Now select the date that you want to set as the starting point for the graph.

The bar below the graph corresponds to the selected timespan. The displayed timeframe can be increased or decreased by moving the sliders with your cursor. If the sliders are set to the outer edges of the bar, the entire week, month or year will be displayed.

After having set the length of the displayed timespan, you can change the displayed section by moving the highlighted area.

Increasing or reducing the displayed timespan

Moving the displayed timespan

7.1.4 Exporting Data

The values measured by Querx can be exported via the web interface. The formats CSV and XML are supported.¹

Open the Querx Web interface.

- **1.** Select the *Timeframe* whose data you want to export, as described in the previous section.
- 2. Click Export.
- **3.** Select the format you want to export the data in from the drop down menu *Format*.
- **4.** Set the time interval between individual exported values in the input field *Steps*.
- 5. Click Download.

The exported files include a timestamp, average-, minimumand maximum-values for each measurement of the selected timeframe.

¹ Data can also be exported in the JSON format via the HTML interface.

7.1.5 Embedding Graphs Into Other Sites

lframe can be used to embed the graph from the Querx home page into any other site that has access to the device via a network.

- 1. Click Export.
- **2.** Copy the displayed *HTML source-code* to the clipboard.
- **3.** Paste the HTML source-code into the site on which you want to display the graph.

7.2 Data Access Via the Cloud

If you have set up cloud services, you can view the data tracked by Querx on their respective websites. Additionally, you can access the data via the programming interfaces provided by the services.

dweet.io can be accessed at https://dweet.io.

You can log into your ThingSpeak channel at https://thingspeak.com/login.

The developer documentation can be found at https://thingspeak.com/docs.

You can log into your Xively feed at https://personal.xively.com.

The developer documentation can be found at https://personal.xively.com/dev.

7.3 Mobile Apps

Apps that can be used to view the data measured by Querx are available for Android and iOS.

The app **Querx Discoverer**, which allows you to access logged data on your devices via your local network or the cloud services, can be downloaded from https://play.google.com/store. It also supports the initial configuration via the discovery protocol.

The Canadian developer *Codenize* provides the iOS app **IoT Monitor**, which lets you access your data on your iPhone via Xively.

7.4 The HTTP Interface

The data logged by Querx and the current measurements can be accessed via the HTTP interface. This lets you integrate the data into existing systems or create your own solutions.

7.4.1 Exporting Current Values

URL	http:// <ip>/tpl/document.cgi?tpl/j/current.tpl</ip>	
URL-parameters:		
format	xml	Returns the current values in the XML format.
	json	Returns the current values in the JSON format.
fname	Filename	Sets the returned file's name.

Example: Ex	porting current values in the XML format (Querx PT)
URL	http://192.168.1.100/tpl/document.cgi? tpl/j/current.tpl&format=xml
Output	<pre><?xml version="1.0" encoding="UTF-8"?> <!DOCTYPE querx PUBLIC "-//egnite//DTD Querx 1.0//EN" "http://www.egnite.de/dtds/querx.dtd"> <querx version="1.0"> <hostname>querx011f30</hostname> <ip>192.168.1.100</ip> <port>80</port> <date_gnt>Tue, 26 Apr 2016 12:55:48</date_gnt> <date_local>Tue, 26 Apr 2016 13:55:48</date_local> <contact></contact> <location></location> <sensors <sensor <br="" id="sensor_1">name="Temperature" unit="°C" status="0" uplim="85.0" lolim="-40.0"/> <sensor <br="" id="sensor_2">name="Humidity" unit="%RH" status="0" uplim="100" lolim="0"/> <sensor <br="" id="sensor_3">name="Dew point" unit="°C"</sensor></sensor></sensor></sensors </querx></pre>
	status="0" uplim="26.0"

```
lolim="0.0"/>
</sensors>
<data>
<record>
<entry sensorid="sensor_1" name="value" value="23.7" trend="0"/>
<entry sensorid="sensor_2" name="value" value="29" trend="0"/>
<entry sensorid="sensor_3" name="value" value="23.7" trend="0"/>
</record>
</data>
</querx>
```

Example: Exporting current values in the JSON format (Querx TH)

URL	http://192.168.1.100/tpl/document.cgi?tpl/j/current.tpl&format=json
Output	<pre>{ "querx": { "rersion": 1.0, "hostname": "querx011f30", "ip": "J92.168.1.100", "port": 80, "date_gmt": "Tue, 26 Apr 2016 12:54:50", "date_local": "Tue, 26 Apr 2016 13:54:50", "date_local": "Tue, 26 Apr 2016 13:54:50", "contact": "", "location": "location", "sensors": {</pre>

```
{"record": {
    "timestamp": "1461675290",
    "date": "26.04.2016",
"time": "13:54:50",
"entry": [
    { "sensorid": "sensor_1",
     "name": "value",
"value": 23.7,
     "trend":0
    }
   ' { "sensorid": "sensor_2",
     "name": "value",
"value": 33,
     "trend":0
    }
   '{ "sensorid": "sensor_3",
     "name": "value",
"value": 23.7,
     "trend":0
    }
    ]
   }
  }
  ]
}
}
```

7.4.2 Exporting Logged Values

URL	http:// <ip>/tpl/docum</ip>	ent.cgi?tpl/j/datalogger.tpl	
URL parameters:			
format	xml	Returns logged values in the XML format.	
	json	Returns logged values in the JSON format.	
	CSV	Returns logged values in the CSV format.	
fname	Filename	Sets the returned file's name.	
start	UNIX-Timestamp (e.g. <i>1459461600</i> for 04/01/2015, 00:00:00)	Exports data starting from the time specified in the Unix timestamp format	
	Negative whole number (e.g. <i>-3600)</i>	Exports data starting from the current time minus the specified number of seconds	
end	UNIX-Timestamp (e.g. <i>1459461600</i> for 04/01/2015, 00:00:00)	Exports data up until the time specified in the Unix timestamp format	
	Negative whole number (e.g. <i>-60</i>)	Exports data up until the current time minus the specified number of seconds	
	0 or blank	Exports data up until the current time	
step	Whole number	Sets the time interval between values	
	0 or blank	Sets the time interval between values to 60 seconds	

Example: Exporting values from the last 24 hours with an interval of 2 hours as "yesterday.csv" (Querx TH)	
URL	<pre>http://192.168.1.100/tpl/document.cgi?tpl/j/datalogger.tpl &format=csv &start=86400 &step=7200</pre>
Output	Date/Time;Temperature low;Temperature avg;Temperature high;Humidity low;Humidity avg;Humidity high 13.04.2016 18:00:00;23.6;23.9;24.0;31;32;32 13.04.2016 20:00:00;24.1;24.2;24.2;32;32;32 13.04.2016 22:00:00;24.2;24.2;24.3;32;33;33 14.04.2016 00:00:00;24.2;24.2;24.3;33;33;33 14.04.2016 02:00:00;24.2;24.2;24.3;33;33;33 14.04.2016 04:00:00;24.2;24.2;24.3;33;33;33 14.04.2016 06:00:00;24.1;24.2;24.2;33;33;33 14.04.2016 08:00:00;23.8;24.1;24.2;33;33;33 14.04.2016 10:00:00;23.7;23.8;23.9;32;33;33 14.04.2016 12:00:00;24.1;24.2;24.3;31;32;33 14.04.2016 12:00:00;24.1;24.2;24.3;31;32;33

Example: Ex format (Qu	xporting the values from the 5 th of April 2016 with an interval of one hour in the XML erx PT)
URL	<pre>http://192.168.1.100/tpl/document.cgi?tpl/j/datalogger.tpl &format=xml &start=1459854000 &end=1459864800 &step=3600</pre>
Output	<pre><?xml version="1.0" encoding="UTF-8"?> <!DOCTYPE querx PUBLIC "-//eqnite//DTD Querx 1.0//EN" "http://www.eqnite.de/dtds/querx.dtd"> <querx version="1.0"> <hostname>querxwlan</hostname> <ip>ip>192.168.1.100</ip> 80 Tue, 26 Apr 2016 10:48:41 <date_local>Tue, 26 Apr 2016 11:48:41</date_local> <contact> <ensors> <sensors id="sensor_1" name="Temperature" unit="°C"> </sensors> <data> <entry name="minimum" sensorid="sensor_1" value="25.3"></entry> <entry name="maximum" sensorid="sensor_1" value="25.4"></entry> <entry name="minimum" sensorid="sensor_1" value="25.3"></entry> <entry name="maximum" sensorid="sensor_1" value="25.4"></entry> <entry name="minimum" sensorid="sensor_1" value="25.4"></entry> <entry name="minimum" sensorid="sensor_1" value="25.4"></entry> <entry name="minimum" sensorid="sensor_1" value="25.4"></entry> <entry name="minimum" sensorid="sensor_1" value="25.4"></entry> </data></ensors></contact></querx></pre>

7.4.3 TLS and User-login

The examples provided above work for unencrypted access to the web interface and when no password protection has been set up. In order to retrieve data as an authorized, password-protected user, you need to log into the web interface and save the session.

Saving the session is also advisable if you need to repeatedly access data via TLS, as the TLS-initialization only needs to be performed once.

URL	https:// <ip>/login.cgi</ip>
POST-Parameters	
login_user	Username
login_pass	Password

Example: User registration	
URL	https://192.168.1.100/login.cgi
Postdata	login_user: querx login_pass: verysecure
Output	Ignore the output but save the session!

7.4.4 Application Examples

Application examples for various coding languages can be found in the tutorials section on the product page at sensors.egnite.de.

8 Maintenance, Tips and Troubleshooting

8.1 Reboot

There are two different ways of rebooting Querx.

8.1.1 Soft Boot

A restart is sometimes required after changing the device's configuration.

Open the page *Maintenance / Reset* in the configuration area.

Reset
Reboot system
Reset configuration
Delete sensor data

1. Click the button *Reboot system*.

Reboot system
Do you really want to reboot the system?
1- Yes No

1. Confirm the soft boot by clicking *Yes* on the following page.

8.1.2 Cold Boot

A cold boot can be required if the device should cease to respond.

- **1.** Disconnect Querx from the power supply.
- **2.** Wait for a few seconds.
- **3.** Reconnect Querx to the power supply.

8.2 Saving the Configuration

The configuration can be exported, in order to save it or apply the same settings to several devices. The following settings are ignored when exporting the configuration:

- Manual network settings
- Email accounts and passwords
- API-keys for cloud services

8.2.1 Exporting the Configuration

Open the page *Maintenance / Backup* in the configuration area.

Configuration backup Configuration Download
--

- **1.** Click the *Download* link labelled *Configuration* in the *Configuration backup* section.
- **2.** Save the file by clicking *OK*.

8.2.2 Restoring the Configuration

Open the page *Maintenance / Backup* in the configuration area.

- Click the *Choose File* button labelled *Backup file* in the *Restore configuration* section and select the configuration file that you intend to activate in the dialog box.
- **2.** Click Upload.

Restart Querx via the web interface, as detailed in section 8.1 *Reboot*.

Finally, reconfigure the cloud services, email accounts and users.

Information

Please note that Querx needs to be rebooted after uploading a configuration file.

8.3 Resetting the Configuration

There are two ways of resetting the configuration to the factory settings.

8.3.1 Resetting the Configuration Via the Web Interface

The network settings will not be changed when resetting the configuration via the web interface.

Open the page *Maintenance / Reset* in the configuration area.

1. Click the button *Reset configuration*.

Configuration reset
Do you really want to restore factory
defaults?
1-• Yes No

1. Confirm that you want to reset the configuration by clicking *Yes* on the following page.

8.3.2 Performing a Hardware Reset

Querx can be returned to the factory settings via a hardware reset, if you can not enter the configuration area, for instance because you do not have the access data at hand.

The network settings will be discarded and the device will be fully returned to the factory settings, when performing a hardware reset.

You will need:

Querx TH / THP / PT

Querx WLAN TH / PT

- **1.** Use the biro to press the reset switch while the device is turned on (see image). The status LED will start to flash red.
- **2.** Keep the switch pressed until the LED stops flashing.
- **3.** Querx will now reboot with the factory settings.

Attention

Do not use a pencil to reset the configuration, as the pencil lead might break and pieces of graphite can damage the device.

8.4 Firmware-Updates

The manufacturer occasionally makes new firmware available, in order to expand the functionality of the Querx product range. If required, these firmware updates can be saved onto your device and activated.

Querx can store two firmware images in two separate buffers. The software is copied into the internal memory and implemented when one of the buffers is activated.

8.4.1 Installing Firmware Images

Open the page *Maintenance / Firmware* in the configuration area.

The firmware that your device is currently running is displayed in the *Firmware* field of the *Version* section. An update may be advisable, if this version of the firmware is older than the one available for download at sensor.egnite.de.

Download the current version of the firmware from the website. Open the page *Maintenance / Firmware* in the configuration area.

- **1.** Select the *Buffer* in which you want to save the firmware image in the section *Install firmware*. You should choose either an empty buffer, or the one with the oldest firmware version.
- **2.** Click *Choose File* and select the firmware image that you want to install.
- **3.** Click *Send* to save the firmware image in the selected buffer.

Installing firmware

8.4.2 Activating a Firmware Image

The new firmware version needs to be activated after being installed. Open the page *Maintenance / Firmware*.

- **1.** Select the *Buffer* containing the firmware image you want to activate in the section *Activate firmware*.
- 2. Click the button *Activate* to activate the new firmware.

Querx will now copy the buffer's contents into its internal memory and then reboot.

Attention

Do not disconnect Querx from the power supply while a firmware image is being activated. If an image is copied incompletely, the device can no longer be used and needs to be sent to the manufacturer to be serviced.

8.4.3 Activating an Alternate Firmware Image

Querx can activate the firmware image stored in the second buffer, if you encounter any unexpected problems after updating the firmware.

You will need:

Querx TH / THP / PT

Querx WLAN TH / PT

- **1.** Unplug the micro-USB cable to disconnect Querx from the power supply.
- **2.** Use the biro to press the switch (see image).
- **3.** Keep the switch pressed while reconnecting Querx to the micro-USB cable.
- **4.** The status-LED will start to flash red. It will stop flashing and remain red after a few seconds.
- **5.** The firmware image stored in the secondary buffer will be loaded into the internal memory once you release the switch. The device will then reboot with the changed firmware.

Attention

Do not use a pencil to reset the configuration, as the pencil lead might break and pieces of graphite can damage the device.

Attention

Do not disconnect Querx from the power supply while a firmware image is being activated. If an image is copied incompletely, the device can no longer be used and needs to be sent to the manufacturer to be serviced.

8.5 Changing the Battery

Querx is fitted with a battery that is used to operate the internal clock in the case of a power shortage. A notification appears in the lower left corner of the web interface if the battery's charge reaches critical levels.

The battery can be changed as detailed in the following section. However, we recommend sending the device in for maintenance.

In order to change the battery you will need:

- Two Phillips screwdrivers, sizes PH0 and PH1
- A replacement battery, type Renata CR1225

Attention

Take care not to touch any electrical contacts while changing the battery. Electrostatic discharges (ESD) can damage the device immediately or in the long run.

8.5.1 Opening the Casing

- Unscrew the screws marked red in the image, using the PH0 screwdriver. Then remove the back cover of the casing.
- 2. A second screw is located inside the casing. It is marked red in the image. Undo this screw using the PH1 screwdriver.

8.5.2 Changing the Battery

- **1.** Carefully lift the circuit board up at the edge opposite the sensor cable.
- **2.** Press the old battery out of the fixture using one of the screwdrivers.
- **3.** Press the new battery into the fixture. If required, use the screwdriver to push the battery into place.
- **4.** Place the circuit board back into the casing.
- **5.** Tighten the screw inside the casing as well as the two screws that fix the back cover.

8.6 Troubleshooting

Problem	Solution	Chapter
No network connection	Configure the network settings manually.	2.7
	Or: Determine whether a problem with the network exists. If necessary, talk to the network administrator.	
Querx reacts slowly	Check the <i>Memory usage</i> value on the page <i>Maintenance /</i> <i>Firmware</i> . If this is above 70%, please close redundant browser tabs.	
Forgotten user password	Reset the configuration	8.3
Network configuration unknown	Configure the network settings manually.	2.7
	Or: Reset the network settings	8.3
NTP / Email / Cloud not working	Ensure that you have configured a valid DNS server	4.2
l need to log into the web interface regularly to configure the device	Increase the value for <i>Session timeout</i> in the user management section.	4.3
The system no longer works after a firmware update	If you have saved a second firmware image on the device, activate it.	8.4

If you encounter any problems not discussed in this manual, please contact the manufacturer egnite directly. The contact details can be found in chapter 9.12 *Manufacturer and Contact Details*.

Furthermore, a tutorial that will help you narrow down possible issues is available at sensors.egnite.de.

9 Appendix

9.1 Drill Templates

9.2 Specifications

9.2.1 Querx TH

Specifications		
Temperature sensor		
Measurement range	-40 °C to 85 °C -40 °F to 185 °F	
Accuracy	±0,4°C (10 to 85°C) / ±1,0°C (-40 to -10°C) ±0,7°F (14 to 185°F) / ±1,8°F (40°F to 14°F)	
Resolution	0,1 °C 0.2 °F	
Long-term stability	\leq 0,01 °C / year (typically)	
Humidity sensor		
Measurement range	0 % to 95 % rF	
Accuracy	±2,0% rF (0 to 80% rF, 30°C/86°F) ±4,0% rF (80 % to 95 % rF, 30°C/86 °F)	
Resolution	1 % rF	
Long-term stability	\leq 0,25 / year (typically)	
Sensor type	CMOS-IC with polymer film	
Hardware and interfaces		
Interval between measurements	1 second	
Calibration	Factory-calibrated, DakkS certificate available (German Accreditation Body)	
Sensor heater	Integrated	
Ethernet	10/100 Mbit RJ45, HP Auto-MDIX Static or dynamic IP (DHCP client)	
Operating system	Nut/OS 5	
Firmware updates	Via web interface, rescue function	
Logging interval	Configurable	
M2M	HTTP (XML, CSV, JSON), Syslog, Modbus/TCP, SNMP	
Data logger capacity	73,728 entries ≙51 days (1 entry/min) to 8.4 years (1 entry/year)	
Web interface	Interactive diagram, live update, HTML5, CSS3, JSON und SVG	
Security	StartTLS / TLS, password protection, user management (3 users / 3 groups)	
Email	Up to 4 recipients and 2 SMTP servers (StartTLS / TLS)	
SNMP	SNMPv1 agent and traps	
Status LED	3 colors: red, green, yellow	
Time / date	Real-time clock with battery backup and SNTP update	
Power supply	5 V DC to 5.5 V DC	
Power consumption	120 mA 0.6W (typically), 200 mA 1W (maximally)	
Ambient conditions		
Operation	-40 °C to 85 °C, max. 95 % rF -40 °F to 185 °F, max. 95 % rF	
Storage	-40 °C to 85 °C, max. 95 % rF -40 °F to 185 °F, max. 95 % rF	
Mechanical data		
Casing material	ABS plastic	

Casing color	Black RAL 9011
Casing dimensions	2.2 x 1.6 x 0.8 in (56,3 x 40 x 21 mm)
Sensor cable length	13.4 in (340 mm)
Weight	0.07 lb (35 g)
Sockets	RJ45 (Ethernet), Micro-USB
Mounting	Wall mounting
Conformity	
European Union	CE-compliant
UL, USA / Canada	UL94V-0
Protection class	IP20

9.2.2 Querx THP

Specifications		
Temperature sensor		
Measurement range	-40 °C to 85 °C -40 °F to 185 °F	
Accuracy	±0,4°C (10 to 85°C) / ±1,0°C (-40 to -10°C) ±0,7°F (14 to 185°F) / ±1,8°F (40°F to 14°F)	
Resolution	0,1 °C 0.2 °F	
Long-term stability	≤ 0,01 °C / year (typically)	
Humidity sensor		
Measurement range	0 % to 95 % rF	
Accuracy	±2,0% rF (0 to 80% rF, 30°C/86°F) ±4,0% rF (80 % to 95 % rF, 30°C/86 °F)	
Resolution	1 % rF	
Long-term stability	≤ 0,25 / year (typically)	
Sensor type	CMOS-IC with polymer film	
Pressure sensor		
Measurement range	300 – 1100 hPa	
Absolute accuracy	±1 hPa	
Relative accuracy	±0,12 hPa	
Resolution	0,18 Pa	
Long-term stability	±1 hPa / Jahr	
Hardware and interfaces		
Interval between measurements	1 second	
Calibration	Factory-calibrated, DakkS certificate available (German Accreditation Body)	
Sensor heater	Integrated	
Ethernet	10/100 Mbit RJ45, HP Auto-MDIX Static or dynamic IP (DHCP client)	
Operating system	Nut/OS 5	
Firmware updates	Via web interface, rescue function	
Logging interval	Configurable	
M2M	HTTP (XML, CSV, JSON), Syslog, Modbus/TCP, SNMP	

Data logger capacity	36864 entries $ m \triangleq$ 25 days (1 entry/min) to 4.2 years (1 entry/h)
Web interface	Interactive diagram, live update, HTML5, CSS3, JSON und SVG
Security	StartTLS / TLS, password protection, user management (3 users / 3 groups)
Email	Up to 4 recipients and 2 SMTP servers (StartTLS / TLS)
SNMP	SNMPv1 agent and traps
Status LED	3 colors: red, green, yellow
Time / date	Real-time clock with battery backup and SNTP update
Power supply	5 V DC to 5.5 V DC
Power consumption	120 mA 0.6W (typically), 200 mA 1W (maximally)
Ambient conditions	
Operation	-40 °C to 85 °C, max. 95 % rF -40 °F to 185 °F, max. 95 % rF
Storage	-40 °C to 85 °C, max. 95 % rF -40 °F to 185 °F, max. 95 % rF
Mechanical data	
Casing material	ABS plastic
Casing color	Black RAL 9011
Casing dimensions	2.2 x 1.6 x 0.8 in (56,3 x 40 x 21 mm)
Sensor cable length	13.4 in (340 mm)
Weight	0.07 lb (35 g)
Sockets	RJ45 (Ethernet), Micro-USB
Mounting	Wall mounting
Conformity	
European Union	CE-compliant
UL, USA / Canada	UL94V-0
Protection class	IP20

9.2.3 Querx WLAN TH

Specifications		
Temperature sensor		
Measurement range	-40 °C to 85 °C -40 °F to 185 °F	
Accuracy	±0,4°C (10 to 85°C) / ±1,0°C (-40 to -10°C) ±0,7°F (14 to 185°F) / ±1,8°F (40°F to 14°F)	
Resolution	0,1 °C 0.2 °F	
Long-term stability	≤ 0,01 °C / year (typically)	
Humidity sensor		
Measurement range	0 % to 95 % rF	
Accuracy	±2,0% rF (0 to 80% rF, 30°C/86°F) ±4,0% rF (80 % to 95 % rF, 30°C/86 °F)	
Resolution	1 % rF	
Long-term stability	\leq 0,25 / year (typically)	
Sensor type	CMOS-IC with polymer film	
Hardware and interfaces		
Interval between measurements	1 second	
Calibration	Factory-calibrated, DakkS certificate available (German Accreditation Body)	
Sensor heater	Integrated	
Ethernet	10/100 Mbit RJ45, HP Auto-MDIX Static or dynamic IP (DHCP client)	
WiFi	2.4 GHz IEEE 802.11 b/g/n	
WiFi encryption	WEP, WPA, WPA2	
Operating system	Nut/OS 5	
Firmware updates	Via web interface, rescue function	
Logging interval	Configurable	
M2M	HTTP (XML, CSV, JSON), Syslog, Modbus/TCP, SNMP	
Data logger capacity	At least 7.5 years of internal memory (4 million entries)	
Web interface	Interactive diagram, live update, HTML5, CSS3, JSON und SVG	
Security	StartTLS / TLS, password protection, user management (3 users / 3 groups)	
Email	Up to 4 recipients and 2 SMTP servers (StartTLS / TLS)	
SNMP	SNMPv1 agent and traps	
Status LED	RGB	
Acoustic signaler	Beeper	
Time / date	Real time clock with battery backup and SNTP update	
Power supply	5 V DC to 5.5 V DC	
Power consumption	200 mA 1 W (typically) / 300 mA 1,5 W (maximally)	
Ambient conditions		
Operation	-40 °C to 85 °C, max. 95 % rF -40 °F to 185 °F, max. 95 % rF	
Storage	-40 °C to 85 °C, max. 95 % rF -40 °F to 185 °F, max. 95 % rF	
Mechanical data		

Casing material	ABS plastic
Casing color	Black RAL 9011
Casing dimensions	2.6 x 2 x 0.8 in (66,3 x 50 x 20 mm)
Sensor cable length	13.4 in (340 mm)
Weight	0.2 lb (63 g)
Sockets	RJ45 (Ethernet), micro-USB
Mounting	Wall mounting
Conformity	
European Union	CE-compliant
UL, USA / Canada	UL94V-0
Protection class	IP20

9.2.4 Querx PT100 / Querx PT1000

Specifications	
Temperature sensor	
Measuring range	Sensor-dependent -200 °C to 750 °C -328 °F to 1382 °F
Accuracy	Sensor-dependent 0,5 °C 0.9 °F
Resolution	0,1 °C 0.2 °F Pt
Pt100/Pt1000-connection	2-, 3- and 4-core
Hardware and interfaces	1
Interval between measurements	1 second
Calibration	DakkS-calibration available (German Accreditation Body)
Ethernet	10/100 Mbit RJ45, HP Auto-MDIX Static or dynamic IP (DHCP client)
Operating system	Nut/OS 5
Firmware updates	Via web interface, rescue function
Data logger capacity	73,728 entries ≙51 days (1 entry/min) to 8.4 years (1 entry/h)
Logging interval	Configurable
M2M	HTTP (XML, CSV, JSON), Syslog, Modbus/TCP, SNMP
Web interface	Interactive diagram, live update, HTML5, CSS3, JSON and SVG
Security	StartTLS / TLS, password protection, user management (3 users / 3 groups)
E-Mail	Up to 4 recipients and 2 SMTP servers (StartTLS / TLS)
SNMP	SNMPv1 agent and traps
Status LED	3 colors: red, green, yellow
Time / date	Real time clock with battery-backup and SNTP-update
Power supply	5 V DC 5.5 VDC via Micro-USB
Power consumption	120 mA 0.6W (typically), 200 mA 1W (maximally)
Ambient conditions	
Operation	-40 °F bis 185 °F, max. 95 % rF -40 °C bis 85 °C, max. 95 % rF
Storage	-40 °C bis 85 °C, max. 95 % rF -40 °F bis 185 °F, max. 95 % rF
Mechanical data	
Casing material	ABS plastic
Casing color	Black RAL 9011
Casing dimensions	2.2 x 1.6 x 0.8 in (56,3 x 40 x 21 mm)
Sensor cable length	13.8 in (340 mm)
Weight	0.07 lb (35 g)
Sockets	RJ45 (Ethernet), Micro-USB
Mounting	Wall mounting
Conformity	
European Union	CE-compliant
UL, USA / Canada	UL94V-0
Protection class	IP20

9.2.5 Querx WLAN PT100 / Querx WLAN PT1000

Specifications		
Temperature sensor		
Measuring range	Sensor-dependent -200 °C bis 750 °C	
	-328 °F bis 1382 °F	
	Sensor-dependent	
Accuracy	0,5 °C	
	0.9 %	
Resolution	0,1 °C 0.2 °F Pt	
Pt100/Pt1000-connection	2-, 3- and 4-core	
Hardware and interfaces		
Interval between measurements	1 second	
Calibration	DakkS-calibration available	
Ethernet	10/100 Mbit RJ45, HP Auto-MDIX Static or dynamic IP (DHCP client)	
WiFi	2.4 GHz IEEE 802.11 b/g/n	
WiFi encryption	WEP, WPA, WPA2	
Operating system	Nut/OS 5	
Firmware updates	Via web interface, rescue function	
Data logger capacity	At least 7.5 years of internal memory (4 million entries)	
Logging interval	Configurable	
M2M	HTTP (XML, CSV, ISON), Syslog, Modbus/TCP, SNMP	
Web interface	Interactive diagram, live update, HTML5, CSS3, ISON and SVG	
	StartTLS / TLS, password protection, user management (3 users / 3	
Security	groups)	
E-Mail	Up to 4 recipients and 2 SMTP servers (StartTLS / TLS)	
SNMP	SNMPv1 agent and traps	
Status LED	3 colors: red, green, yellow	
Time / date	Real time clock with battery-backup and SNTP-update	
Power supply	5 V DC 5.5 VDC via USB	
Power consumption	200 mA 1 W (typically) / 300 mA 1,5 W (maximally)	
Ambient conditions		
Operation	-40 °F bis 185 °F, max. 95 % rF -40 °C bis 85 °C, max. 95 % rF	
Storage	-40 °C bis 85 °C, max. 95 % rF -40 °F bis 185 °F, max. 95 % rF	
Mechanical data		
Casing material	ABS plastic	
Casing color	Black RAL 9011	
Casing dimensions	2.6 x 2 x 0.8 in (66,3 x 50 x 20 mm)	
Sensor cable length	13.8 in (340 mm)	
Weight	0.2 lb (63 g)	
Sockets	RJ45 (Ethernet), Micro-USB	
Mounting	Wall mounting	
Conformity		
European Union	CE-compliant	
UL, USA / Canada	UL94V-0	
Protection class	IP20	
L	1	

9.2.6 Sensor Details

9.2.6.1 TH Models: Temperature Sensor

	Measuring range	Typical	Maximal	Unit
Accuracy	-10 – 85	± 0.3	± 0.4	°C
	-40 – 100	See illustration		°C
	14 – 185	± 0.54	± 0.7	°F
	-40 - 212	See illustration		°F
Long-term stability		≤ 0.01		°C / year
		≤ 0.02		°F / year

9.2.6.2 THP Models: Temperature Sensor

	Measuring range	Typical	Unit
Accuracy	25	± 0.5	°C
	0 – 65	± 1.0	°C

9.2.6.3 TH Models: Humidity Sensor

	Measuring range	Typical	Maximal	Unit
Accuracy	0 – 80	± 2	± 3	%
	80 – 100	See illustration		%
Long-term stability		≤ 0.25		% / year

9.2.6.4 THP Models: Humidity Sensor

	Measuring range	Typical	Unit
Accuracy	20 – 80	± 3	%rH
Long-term stability	at 10 – 90 %rH, 25 °C	0.5	%rH / year

9.2.6.5 THP Models: Pressure Sensor

	Measuring range	ТурісаІ	Unit
Accuracy	300 – 1100	± 1	hPa
Long-term stability	at 0 - 60 °C	± 1	hPa / year

9.2.6.6 Inaccuracies in Extreme Conditions

The capacitive humidity sensor consists of a thin polymer film that is located between two electrodes. Depending on the humidity, the polymer absorbs or releases vapor contained in the surrounding air. This changes the polymer film's dielectric properties and thus the sensor's capacitance. This has the following advantages over other types of sensors:

- quick response
- wide measuring range with an almost linear characteristic curve
- high accuracy and long-term stability

If the sensors are continuously exposed to extreme conditions such as high temperatures, high aridity or high humidity, the sensor film can become too dry or too moist. This will lead to a temporary inaccuracy in the humidity and dew point values.

9.2.6.7 Calculating the Dew Point

The dew point is calculated by applying the following formula to the current temperature and humidity values:

```
T_{DC} = (T_{C} - (14.55 + 0.114 * T_{C}) * (1 - (0.01 * RH)) 
- ((2.5 + 0.007 * T_{C}) * (1 - (0.01 * RH)))^{3} 
- (15.9 + 0.11* T_{C}) * (1 - (0.01 * RH))^{14})
```

Cf.: H. Dean Parry, 1969: "The semiautomatic computation of rawinsondes", Technical memorandum WBTM EDL 10, U.S. Department of Commerce, Environmental Science Services Administration, Weather Bureau, Silver Spring, MD (October), page 9 and page ii-4, line 460.

Please note that inaccuracies in the temperature and humidity values influence the accuracy of the dew point calculation.

9.3 Conformity

Querx fulfills the following EU-regulations: Interference immunity:

- EN 61326-1:2013 Class A
- EN 61000-4-2:2009
- EN 61000-4-3:2011
- EN 61000-4-4:2013
- EN 61000-4-6:2009
- EN 61000-4-8:2010

Interference emission:

- EN 61326-1:2013 Class B
- EN 55011:2011

RoHS:

EU Directive 2011/65/EU

WLAN Models:

ETSI:

- EN300 328, Ver. 1.8.1
- EN301.489 17

The EC-conformity declaration can be requested from the manufacturer. Technical changes reserved.

9.4 Sensor Calibration

The sensor used for the TH and THP models are factory-calibrated.

A DAkkS certificate (German Accreditation Body) is available for all products, if the intended use requires exact documentation for quality control purposes.

Further information concerning this can be found on the product page at sensors.egnite.de as well as in our onlinestore at shop.egnite.de. Please feel free to contact us if you require personal assistance.
9.5 Modbus Registers

Read Registers					
Address	Offset	Format	Contents		
30011	10	int16	Temperature Celsius * 10		
30012	11	int16	Relative humidity %		
30013	12	int16	Temperature Fahrenheit * 10		
30014	13	int16	Temperature Kelvin * 10		
30015	14	int16	Dew point Celsius * 10		
30016	15	int16	Dew point Fahrenheit * 10		
30017	16	int16	Dew point Kelvin * 10		
30020	19	int16	Pressure hPa * 10		

Holding Registers

Address	Offset	Format	Contents
40021	20	int16	Lower temperature limit Celsius * 10
40022	21	int16	Upper temperature limit Celsius * 10
40023	22	int16	Temperature dead band Kelvin /
			Celsius * 10
40024	23	int16	Lower temperature limit Fahrenheit * 10
40025	24	int16	Upper temperature limit Fahrenheit * 10
40026	25	int16	Temperature dead band Fahrenheit * 10
40027	26	int16	Lower temperature limit Kelvin * 10
40028	27	int16	Upper temperature limit Kelvin * 10
40031	30	int16	Lower humidity limit
40032	31	int16	Upper humidity limit
40033	32	int16	Humidity dead band
40051	50	int16	Lower dew point limit Celsius * 10
40052	51	int16	Upper dew point limit Celsius * 10
40053	52	int16	Dew point dead band Celsius * 10
40054	53	int16	Lower dew point limit Fahrenheit * 10
40055	54	int16	Upper dew point limit Fahrenheit * 10
40056	55	int16	Dew point dead band Fahrenheit * 10
40057	56	int16	Lower dew point limit Kelvin * 10
40058	57	int16	Upper dew point limit Kelvin * 10

9.6 SNMP Object Identifiers

OID	Description
1.3.6.1.4.1.3444.1.14.1.2.1.5.1	Temperature sensor
1.3.6.1.4.1.3444.1.14.1.2.1.5.2	Humidity sensor
1.3.6.1.4.1.3444.1.14.1.2.1.5.3	Calculated dew point
1.3.6.1.4.1.3444.1.14.2.0.101	Trap-code for normal conditions
1.3.6.1.4.1.3444.1.14.2.0.102	Trap-code for alerts

The complete MIB is saved on the device and can be downloaded from the site Interfaces / SNMP in the configuration area.

9.7 The Measuring and Data-Logging Processes

Querx measures the current values once per second. The measurements can be accessed via SNMP, Modbus and the web interface.

The integrated data logger saves the measured minimum-, maximum-, and median-values once a minute and adds the corresponding time and date to each entry.

When retrieving or exporting data, the interval between entries should not be set to a smaller value than the interval between logged entries.

9.8 Supported Export Data Formats

Querx can export data in the following three formats:

CSV

Data that is exported in the CSV format can be opened in any spreadsheet application.

XML

The transport data format XML is suited to the export and further processing of data in various applications.

JSON

JSON is a Java-based format that has been gaining importance, especially with regards to the internet of things.

9.9 Technical Support

If you encounter any problems with one of our products, the team at egnite will be glad to assist and advise you.

Please keep the following information at hand when contacting us, in order to make it as easy as possible for us to help you:

- Name and model number of your product
- Serial number or MAC address
- Currently activated firmware
- If readily available: Date of purchase and the distributor who you purchased the product from

You can also find instructions that will help you narrow down the causes for your problem using a Syslog application in the *Querx Tutorials* section at sensors.egnite.de.

Please work through this manual and send us the recorded log files.

9.10 Notes on Storage

Do not store the devices in polyethylene bags. The emitted gasses can harm the sensor.

Substances that contain bleach, hydrogen peroxide or ammonia can also be harmful.

9.11 Environmentally Appropriate Disposal

Please dispose of the devices in accordance with the valid laws and environmental regulations.

The devices contain electrical components as well as a battery and must therefore be disposed of separately from household waste. Hand the devices in at an official collection point.

9.12 Manufacturer and Contact Information

egnite GmbH Erinstrasse 18 44575 Castrop-Rauxel Germany

Email: info@egnite.de Tel. +49 (0)2305 441256 Fax +49 (0)2305 441487

www.egnite.de

sensors.egnite.de

9.13 Disclaimer

egnite can not be held responsible for technical or typographical mistakes. We reserve the right to alter the documentation without further announcements.

Revision 1.0

© 2014 egnite GmbH, Germany. All rights reserved.

All trademarks used are the property of the respective holders of the rights.