

VS1005g - Audio Processing Platform IC

Analog Hardware Features

- Three channels of 24-bit audio ADC
- Two 24-bit audio DACs
- Stereo earphone driver for 30 Ω load
- Internal microphone amplifiers
- Stereo FM radio receiver with RDS
- 10-bit ADC, 3-5 external inputs
- Operation from single power supply, four programmable internal regulators

Digital Hardware Features

- 100 MIPS VS_DSP⁴ processor core
- 128 KiB program RAM (32 KiWord)
- 128 KiB data RAM (2×32 KiWord)
- Protected 8 Mi-bit FLASH (Optional)
- USB 2.0 Full Speed Host / Device
- I2S and SPDIF digital audio interfaces
- NAND FLASH interface with EEC
- SD Card interface
- 2 SPI bus interfaces
- 10BaseT Ethernet controller
- UART interface
- All digital pins are user configurable for general purpose IO
- Flexible clock selection, default operation from 12.288 MHz
- Internal PLL clock multiplier for digital logic
- RTC with battery backed memory
- Reed-Solomon error correction
- HW debug support with VSIDE via JTAG

Firmware and VSOS Features

- Decoders: MP3, WMA, Ogg Vorbis, AAC, ALAC, FLAC, AIFF, WAV PCM, DSD
- Encoders: MP3, Ogg Vorbis, WAV PCM
- File I/O for SD cards and USB drives
- FM tuner and RDS decoder
- USB host and device libraries
- Extensive audio DSP library
- VSOS UART Shell Environment
- Flexible boot options
- Pre-emptive multitasking
- Easy-to-write software interface with VSIDE
- Graphical display with resistive touch panel

Applications

- Portable recorders
- Digital docking stations
- MP3 players
- Internet radio
- Wireless headphones
- Audio co-processor

Overview

VS1005g is a flexible audio platform device. It is built around VS_DSP⁴, which is a powerful DSP (Digital Signal Processor) core, and runs VLSI Solution's proprietary DSP-oriented, multitasking VSOS operating system.

VS1005g's digital interfaces provide flexible access to external devices in standalone applications, and flexible digital audio data inputs and outputs when the device is used as an audio signal processor in complex systems. The analog interfaces provide highquality audio inputs and outputs, and the control ADC can be used for example for interfacing a resistive touch panel.

VS1005g has an embedded FLASH memory of 8 Mi-bits (1 MiByte) for customization by VLSI, customers or third parties. The firmware and hardware are designed to prevent access to the embedded FLASH in protected mode. After FLASH memory programming VS1005g can be booted from it as a fully customized stand-alone audio processor.

VS1005g is offered in six different variants (see Chapter 4 for details).

Contents

vs	61005ç	Front Page	1
Та	ble of	Contents	2
Li	st of F	igures	7
1	Discl	aimer	8
2	Licer	ISES	8
3	Defin	itions	8
4	Prod	uct Variants	8
5	Chara	acteristics & Specifications	9
	5.1	Absolute Maximum Ratings	9
	5.2	Recommended Operating Conditions	10
	5.3	Analog Characteristics of Audio Outputs	11
	5.4	Analog Characteristics of Audio Inputs	12
	5.5	SAR Characteristics	12
	5.6	FM Characteristics	12
	5.7	Analog Characteristics of Regulators	13
	5.8	Analog Characteristics of VHIGH voltage monitor	14
	5.9	Analog Characteristics of CVDD voltage monitor	14
	5.10	Power Button Characteristics	14
	5.11	Digital Characteristics	14
	5.12	Power Consumption	15
		5.12.1 Digital Power Consumption	15
		5.12.2 Analog Power Consumption	15
		5.12.3 I/O Power Consumption	16
		5.12.4 Example Power Consumption	16

6	Pack	age and P	in Descriptions	17
	6.1	LFGA-88	Package, Current: VS1005g from Datecode 1407	17
	6.2	LFGA-88	Package, Old: VS1005g up to Datecode 1406	20
	6.3	Pin Assig	nments	23
	6.4	VS1005g	Pin Descriptions	24
		6.4.1	PCB Layout Recommendations	27
7	Exam	nple Scher	natic	28
	7.1	Important	Tips and Guidelines for Designing VS1005g Products	29
		7.1.1	Design for Debuggability and Productability	29
		7.1.2	Choose Carefully Which GPIO Pins You Use	29
		7.1.3	Design for Reliability	30
		7.1.4	Design for Quality	30
8	VS10	05g Gene	ral Description	31
	8.1	VS1005g	Internal Architecture	32
		8.1.1	Regulator Section	32
		8.1.2	I/O Section	33
		8.1.3	Digital Section	33
	8.2	Analog Se	ection	35
9	Oscil	lator and	Reset Configuration	36
10	Firm	ware Oper		37
	10.1	SPI Boot		38
	10.2		ASH Probe	39
	10.3	UART Bo	ot/Monitor	40
	10.4	Default Fi	rmware Features	40
		10.4.1	SD Card Test	40
		10.4.2	USB Mass Storage and Audio Device	40
	10.5	Supported	d Audio Decoders	41
		10.5.1	Supported MP3 (MPEG layer III) Decoder Formats	41

	10.6	Supporte	d Audio Encoders	42
		10.6.1	Supported MP3 (MPEG layer III) Encoder Formats	42
11	VS10	05g Perip	herals and Registers	43
	11.1	The Proce	essor Core	43
	11.2	VS1005g	Memory Map	43
	11.3	VS1005g	Peripherals	44
	11.4	Interrupt (Controller	46
		11.4.1	Interrupt Controller Registers	47
		11.4.2	Interrupt Enable INT_ENABLE[0/1]_[H/L]P	47
		11.4.3	Interrupt Origin INT_ORIGIN[0/1]	48
		11.4.4	Interrupt Vector INT_VECTOR	48
		11.4.5	Interrupt Enable Counter INT_ENCOUNT	48
		11.4.6	Interrupt Global Disable INT_GLOB_DIS	48
		11.4.7	Interrupt Global Enable INT_GLOB_ENA	49
	11.5	DSP Cloc	k Domain Registers	50
		11.5.1	General Purpose Software Registers	50
		11.5.2	Peripheral I/O Control	50
		11.5.3	PLL Clock Control	50
	11.6	XTALI Clo	ock Domain Registers	52
		11.6.1	Analog Control Registers	52
		11.6.2	Regulator and Peripheral Clock Control Registers	56
	11.7	Audio Pla	yback Interfaces	57
		11.7.1	Primary Audio Path 24-bit Sample Rate Upconverter with Filters: DAC Registers	58
		11.7.2	Test Modes and DAC/ADC Control Registers	58
		11.7.3	Configuring Analog DAC Modules	59
		11.7.4	Primary Audio Path Volume Control	60
		11.7.5	Secondary Audio Path: DAOSET Registers	61
		11.7.6	Filterless Sample Rate Converter (SRC) Registers	62
	11.8	24-bit Ana	alog to Digital Converters (ADC)	63

11.8.1 Configuring Signal Paths for ADC1, ADC2 and ADC3 64	
11.8.2 Digital Filter Operation Modes	;
11.9 FM Receiver	;
11.9.1 Configuring RF and Analog Modules for FM Receiver Mode 68	}
11.9.2 Configuring the FM Demodulator)
11.9.3 Radio Data System (RDS)	
11.10 SPI Peripherals	;
11.11 Common Data Interfaces	,
11.11.1 Ethernet Controller)
11.11.2 Reed-Solomon Codec	;
11.11.3 Nand Flash Interface	,
11.11.4 SD Card Interface)
11.12 USB Peripheral	
11.12.1 USB Peripheral Registers)
11.12.2 USB Clocking Modes	;
11.12.3 USB Host	;
11.13 Interruptable General Purpose IO Ports 0-2	;
11.14 S/PDIF Peripheral	;
11.14.1 S/PDIF Receiver 98	;
11.14.2 S/PDIF Receiver Registers)
11.14.3 S/PDIF Transmitter	I
11.14.4 S/PDIF Transmitter Registers	2
11.15 UART (Universal Asynchronous Receiver/Transmitter) Peripheral	3
11.15.1 UART Peripheral Registers	3
11.16 Watchdog Peripheral	3
11.16.1 Watchdog Registers 108	3
11.17 I2S Peripheral)
11.17.1 I2S Peripheral Registers)
11.18 Timer Peripheral	
11.18.1 Timer Peripheral Registers	

11.19 Real Time Clock (RTC)	113
11.19.1 RTC Peripheral Registers	113
11.20 10-Bit Successive Approximation Register Analog-to-Digital Converter (SAR) . 1	115
11.21 Pulse Width Modulation Unit	117
11.22 Special Features	118
11.22.1 Software Protection	118
12 VS1005g Debugger 1	19
13 Document Version Changes 1	22
14 Contact Information 1	23

List of Figures

1	VS1005g LFGA-88 (VS1205G-F product variant) top and bottom view photo	17
2	VS1005g LFGA-88 (VS1205G-F product variant) side view photo.	17
3	VS1005g LFGA-88 (VS1205G-F product variant) bottom corner view photo	17
4	VS1005g top view, LFGA-88	18
5	VS1005g corner view, LFGA-88	18
6	VS1005g bottom view, LFGA-88	19
7	VS1005g side view, LFGA-88	19
8	VS1005g old LFGA-88 (VS1205G-F product variant) top and bottom view photo	20
9	VS1005g top view, old LFGA-88	21
10	VS1005g bottom view, old LFGA-88	22
11	VS1005g side view, old LFGA-88	22
12	VS1005g 88-pin LFGA pin assignment	23
13	VS1005g default pin usage	28
14	VS1005g external interfaces	31
15	VS1005g block diagram	32
16	VS1005g's memory map	43
17	VS1005g playback (DA) audio paths	57
18	VS1005g recording (AD and FM) signal paths	63
19	Block diagram of FM receiver, RF and analog section	68
20	Structure of the RDS baseband coding group	71
21	Block diagram of data interfaces	77
22	VS1005g USB block diagram	91
23	VS1005g UTM functional block diagram	92
24	S/PDIF frame format	98
25	S/PDIF sub-frame format	98
26	RS232 serial interface protocol	106
27	I2S frame format	109
28	JTAG state machine	119

1 Disclaimer

This is a *preliminary* datasheet. All properties and figures are subject to change.

2 Licenses

This Chapter intentionally left blank.

3 Definitions

ABR Average BitRate. Bitrate of stream may vary locally, but will stay close to a given number when averaged over a longer time.

B Byte, 8 bits.

b Bit.

CBR Constant BitRate. Bitrate of stream will be the same for each compression block.

CBUF Headphone Common Buffer. Outputs DC voltage.

GBUF Same as CBUF.

Ki "Kibi" = 2^{10} = 1,024 (IEC 60027-2).

Mi "Mebi" = 2^{20} = 1,048,576 (IEC 60027-2).

Gi "Gibi" = 2^{30} = 1,073,741,824 (IEC 60027-2).

VBR Variable BitRate. Bitrate will vary depending on the complexity of the source material.

VS_DSP VLSI Solution's DSP core.

VSOS VLSI Solution's Operating System

VSIDE VLSI Solution's Integrated Development Environment.

W Word. In VS_DSP, instruction words are 32 bits and data words are 16 bits wide.

4 Product Variants

Device ID (Order Code)	MP3 Encoder	MP3 Decoder	Embedded 8 Mi-bit Flash
VS1005G-Q		Х	
VS1005G-F-Q		Х	Х
VS1205G-Q	Х	Х	
VS1205G-F-Q	Х	Х	Х

5 Characteristics & Specifications

5.1 Absolute Maximum Ratings

Parameter	Symbol	Min	Max	Unit
Regulator input voltage	VHIGH	-0.3	5.25	V
Analog Positive Supply	AVDD	-0.3	3.6	V
Digital Positive Supply	CVDD	-0.3	1.95	V
Digital RTC Supply	RTCVDD	-0.3	1.95	V
I/O Positive Supply	IOVDD	-0.3	3.6	V
Voltage at Any Digital Input ³		-0.3	IOVDD+0.3 ¹	V
Voltage at power Button	PWRBTN	-0.3	3.6	V
Voltage at RTC Pins	XTALI_RTC, XTALO_RTC	-0.3	CVDD+0.3 ⁴	V
Total Injected Current on Pins			±200 ²	mA
Operating Temperature		-40	+85	°C
Storage Temperature		-65	+150	°C

 1 Must not exceed 3.6 V

² Latch-up limit

³ Except RTC and PWRBTN pin

 4 Must not exceed 1.95 V

5.2 Recommended Operating Conditions

Voltage Specification							
Parameter	Symbol	Min	Тур	Max	Unit		
Operating temperature		-40		+85	°C		
Analog and digital ground 1	AGND DGND		0.0		V		
Regulator input voltage ²	VHIGH	AVDD+0.3	4.0	5.25	V		
Analog positive supply ³	AVDD	2.75	2.8	3.6	V		
Digital positive supply 3	CVDD	1.65	1.8	1.95	V		
Digital RTC supply	RTCVDD	1.2	1.5	1.95	V		
I/O positive supply ³	IOVDD	1.8	2.8	3.6	V		

¹ Must be connected together as close the device as possible for latch-up immunity.

² At least 4.0 V is required for compliant USB level.

³ Regulator output of the device.

Oscillator Specification							
Parameter	Symbol	Min	Тур	Max	Unit		
Input clock frequency ¹	XTALI	11	12.288 ²	13	MHz		
Input clock duty cycle		40	50	60	%		
Oscillator frequency tolerance			±10		ppm		
Startup time			1		ms		
Internal clock frequency, USB connected	CLKU	60		60	MHz		
Internal clock frequency, USB disconnected	CLKI			98	MHz		
RTC clock frequency ³	XTALI_RTC		32768		Hz		
RTC frequency tolerance			+/-100		ppm		
RTC oscillator startup time			1000		ms		

¹ The maximum sample rate that can be played with correct speed is XTALI/128. E.g. with a 12.288 MHz XTALI the maximum sample rate is 96000 Hz.

 2 When Full Speed USB is used it is recommended that XTALI of 12.288 MHz or 12.0 MHz is used. The ROM USB firmware assumes XTALI = 12.288 MHz.

³ The 32 kHz crystal is optional, but required for RTC time counter.

5.3 Analog Characteristics of Audio Outputs

Unless otherwise noted: AVDD=3.6 V, CVDD=1.8 V, IOVDD=2.8 V, V_{ref} =1.6 V, TA=+25°C, XTALI=12 MHz, Internal Clock Multiplier $3.0 \times$. DAC tested with full-scale output sinewave, measurement bandwidth 20..20000 Hz, analog output load: LEFT to CBUF 30 Ω , RIGHT to CBUF 30 Ω . Microphone test amplitude 50 mVpp, f=1 kHz, Line input test amplitude 2.2 Vpp, f=1 kHz. FM test signal input level -70 dBm, deviation 75 kHz, pre-emphasis 50 μ s, f=1 kHz.

DAC Characteristics						
Parameter	Symbol	Min	Тур	Max	Unit	
DAC Resolution			24		bits	
Dynamic range (DAC unmuted, A-weighted, min gain)	IDR		100		dB	
S/N ratio (full scale signal, no load)	SNR		92		dB	
S/N ratio (full scale signal, 30 ohm load)	SNRL		90		dB	
Total harmonic distortion, -3dB level, no load	THD		0.01		%	
Total harmonic distortion, -3dB level, 30 ohm load	THDL		0.05		%	
Crosstalk (L/R to R/L), 30 ohm load, without CBUF ¹	XTALK1		-75		dB	
Crosstalk (L/R to R/L), 30 ohm load, with CBUF	XTALK2		-54		dB	
Gain mismatch (L/R to R/L)	GERR	-0.5		0.5	dB	
Frequency response	AERR	-0.05		0.05	dB	
Full scale output voltage	LEVEL		1.0		Vrms	
Deviation from linear phase	PH		0	5	0	
Analog output load resistance	AOLR		30 ²		Ω	
Analog output load capacitance	AOLC			100 ³	pF	
DC level, V _{ref} =1.2 V (CBUF, LEFT, RIGHT)	VREF12	1.1	1.2	1.3	V	
DC level, V _{ref} =1.6 V (CBUF, LEFT, RIGHT)	VREF16	1.5	1.6	1.7	V	
CBUF disconnect current (short-circuit protection)			130	200	mA	

¹ Loaded from Left/Right pin to analog ground via 100 μ F capacitors.

 2 AOLR may be lower than *Typical*, but distortion performance may be compromised. Also, there is a maximum current that the internal regulators can provide.

³ CBUF must have external 10 Ω + 47 nF load, LEFT and RIGHT must have external 20 Ω + 10 nF load for optimum stability and ESD tolerance.

5.4 Analog Characteristics of Audio Inputs

ADC Characteristics							
Parameter	Symbol	Min	Тур	Max	Unit		
ADC Resolution			24		bits		
Microphone input amplifier gain	MICG		20		dB		
Microphone input amplitude			50	140 ¹	mVpp AC		
Microphone Total Harmonic Distortion	MTHD		0.02	0.10	%		
Microphone S/N Ratio, A-weighted	MSNR	50 ²	75		dB		
Line input amplitude			2200	2800 ¹	mVpp AC		
Line input Total Harmonic Distortion	LTHD		0.015	0.10	%		
Line input S/N Ratio	LSNR	80 ²	90	100	dB		
Sample rate		24		192	kHz		
Line and Microphone input impedances			100		kΩ		

 1 Above typical amplitude the Harmonic Distortion increases. 2 Limit Min due to noise level of production tester.

5.5 SAR Characteristics

SAR Characteristics									
Parameter	Symbol	Min	Тур	Max	Unit				
SAR resolution			10		bits				
Input amplitude range		0		AVDD	V				
SAR sample rate ¹				100	kHz				
Integral Nonlinearity	INL		+/-2		LSB				
Differential Nonlinearity	DNL		+/-0.5		LSB				

¹ XTALI dependent

5.6 FM Characteristics

FM Characteristics							
Parameter	Symbol	Min	Тур	Max	Unit		
Channel frequency range, 10 kHz steps		76		108	MHz		
FM mono S/N Ratio, deviation 22kHz, Input level -50dBm 1	LSNR		72		dB		
FM stereo S/N Ratio, deviation 45kHz, Input level -50dBm ¹	LSNR		47		dB		
FM mono S/N Ratio, deviation 22kHz, Input level -90dBm ¹	LSNR		45		dB		
FM stereo S/N Ratio, deviation 45kHz, Input level -90dBm ¹	LSNR		27		dB		
Total harmonic distortion, deviation 75 kHz	THD		0.1	0.3	%		
Stereo separation			40		dB		

¹ Measured over whole FM band

5.7 Analog Characteristics of Regulators

Parameter	Symbol	Min	Тур	Max	Unit
IOVDD					
Recommended voltage setting range		1.7		3.6	V
Voltage setting step size		55	60	65	mV
Default setting, reset mode ¹			1.8		V
Default setting, active mode ²			1.8/3.6 ³		V
Load regulation			4.0		mV/mA
Line regulation from VHIGH			2.0		mV/V
Continuous current			30 ⁴	60	mA
IOVDD2					
Recommended voltage setting range		1.7		3.6	V
Voltage setting step size		55	60	65	mV
Default setting, reset mode ¹			1.8		V
Default setting, active mode ²			1.8/3.6 ³		V
Load regulation			4.0		mV/mA
Line regulation from VHIGH			2.0		mV/V
Continuous current			30 ⁴	60	mA
CVDD					
Recommended voltage setting range		1.65		1.95	V
Voltage setting step size		25	30	35	mV
Default setting, reset mode ¹			1.8		V
Default setting, active mode ²			1.8		V
Continuous current			25 ⁴	70	mA
Load regulation			2.0		mV/mA
Line regulation from VHIGH			2.0		mV/V
AVDD					
Recommended voltage setting range		2.6		3.6	V
Voltage setting step size		35	40	45	mV
Default setting, reset mode ¹			2.5		V
Default setting, active mode ²			2.7		V
Continuous current			30 ⁴	70	mA
Load regulation			1.5		mV/mA
Line regulation from VHIGH			2.0		mV/V
PWRBTN					
Minimum startup voltage			0.9		V
Minimum startup pulse			100		ms

¹ Device enters reset mode when XRESET pin is pulled low.

² Device enters active mode when XRESET pin is pulled high after reset mode. Regulator settings can be modified when booted from external memory (see Section 10).

³ Depends on GPIO0_7 pin status in boot (see Section 10).

⁴ Device is tested with a 30 mA load.

5.8 Analog Characteristics of VHIGH voltage monitor

Parameter	Symbol	Min	Тур	Max	Unit
Trigger voltage	AMON		1.07×AVDD		V
Hysteresis			50		mV

5.9 Analog Characteristics of CVDD voltage monitor

Parameter	Symbol	Min	Тур	Max	Unit
Trigger voltage	CMON	1.40	1.45		V
Hysteresis			2		mV

5.10 Power Button Characteristics

Unless otherwise noted: VHIGH = 4.0..5.3 V

Parameter	Symbol	Min	Тур	Max	Unit
Power button activation threshold	PBTHR		1.0		V

5.11 Digital Characteristics

Parameter	Symbol	Min	Тур	Max	Unit
High-Level Input Voltage		$0.7 \times IOVDD$		IOVDD+0.3	V
Low-Level Input Voltage		-0.2		$0.3 \times IOVDD$	V
High-Level Output Voltage, -1.0 mA load ¹		$0.7 \times IOVDD$			V
Low-Level Output Voltage, 1.0 mA load 1				$0.3 \times IOVDD$	V
XTALO high-level output voltage, -0.1 mA load		$0.7 \times IOVDD$			V
XTALO low-level output voltage, 0.1 mA load				$0.3 \times IOVDD$	V
Input leakage current		-1.0		1.0	μA
Rise time of all output pins, load = 30 pF 1				50	ns

¹ Pins GPIO0_[15:0], GPIO1_[15:0], GPIO2_[13:0].

5.12 Power Consumption

5.12.1 Digital Power Consumption

The following power consumptions are, unless otherwise noted, obtained with the following parameters: decoding 128 kbit/s 44.1 kHz stereo MP3 from RAM memory to analog output, CVDD = 1.67 V, AVDD = 3.6 V, IOVDD = 3.3 V, V_{ref} = 1.6 V, XTALI = 12.288 MHz.

Digital Current Consumption from CVDD, MP3 decode								
Parameter	Symbol	Min	Тур	Max	Unit			
Firmware default setup after startup, CLKI = 60.000 MHz	ID60MP3		24.4		mA			
Using PLL clock instead of RF clock, CLKI = 61.440 MHz			16.5		mA			
After powering down unused peripherals, CLKI = 61.440 MHz	ID61MP3		13.4		mA			
Setting CLKI = 36.684 MHz ¹	ID36MP3		12.0		mA			
Setting CLKI = 24.576 MHz	ID24MP3		11.1		mA			
Decode 96 kbit/s 16 kHz stereo MP3, CLKI = 12.288 MHz	ID12MP3		7.4		mA			
Decode 56 kbit/s 16 kHz mono MP3, CLKI = 6.144 MHz	ID06MP3		3.8		mA			
Check for Key push using GPIO, CLKI = 12.000 kHz	ID12KHZ		0.1		mA			

¹ This clock is enough to decode all MP3 streams with some to spare.

The following table shows the digital power consumption when the processor is running but sitting idle >95% of the time.

Digital Current Consumption from CVDD, Processor Idle							
Parameter	Symbol	Min	Тур	Max	Unit		
CLKI = 61.440 MHz	ID61IDLE		7.1		mA		
CLKI = 24.576 MHz	ID24IDLE		4.6		mA		
CLKI = 12.288 MHz	ID12IDLE		3.0		mA		
CLKI = 6.144 MHz	ID06IDLE		1.6		mA		

5.12.2 Analog Power Consumption

The following power consumptions are, unless otherwise noted, obtained with the following parameters: decoding 128 kbit/s 44.1 kHz stereo MP3 from RAM memory to analog output, CVDD = 1.67 V, AVDD = 2.75 V / 3.60 V for $V_{ref} = 1.2 \text{ V} / 1.6 \text{ V}$, respectively, IOVDD = 3.3 V, XTALI = 12.288 MHz, CLKI = 24.576 MHz.

Typical Analog Current Consumption from AVDD								
		$V_{ref} = 1.2 V$ $V_{ref} = 1.6 V$		= 1.6 V				
		30 Ω	10 k Ω	30 Ω	10 k Ω			
Parameter	Symbol	Тур	Тур	Тур	Тур	Unit		
Full-scale 1 kHz sine wave, full volume ¹	IAFSxxVyy ²	42.0	5.4	57.4	8.7	mA		
Loud music, full volume	IA0DBxxVyy ²	11.2	5.3	15.6	8.1	mA		
Loud music, -20 dB volume	IA20DBxxVyy ²	5.6	5.3	8.3	8.0	mA		
Silence	IASILxxVyy ²	5.4	5.3	8.1	8.0	mA		
Mute (analog drivers off)	IAMxxVyy ²	1.8	1.8	2.5	2.5	mA		

¹ Output signal approximately 660 mVrms for V_{ref} =1.2 V, and 900 mVrms for V_{ref} =1.6 V.

² Replace xx with 12 for V_{ref}=1.2 V and 16 for V_{ref}=1.6 V. Replace yy with 30 for 30 Ω load, and with HI for 10 k Ω load.

5.12.3 I/O Power Consumption

The following power consumptions are, unless otherwise noted, obtained with the following parameters: decoding 128 kbit/s 44.1 kHz stereo MP3 from RAM memory to analog output, CVDD = 1.67 V, AVDD = 3.6 V, XTALI = 12.288 MHz, no specific I/O activity.

Digital Current Consumption from CVDD, MP3 decode								
Parameter	Symbol	Min	Тур	Max	Unit			
IOVDD = 3.6 V	IIO36		1.51		mA			
IOVDD = 3.3 V	IIO33		1.20		mA			
IOVDD = 2.7 V	IIO27		0.85		mA			
IOVDD = 1.8 V	IIO18		0.46		mA			

5.12.4 Example Power Consumption

Let's assume a system with an earphone output and audio playback capability. Let's further assume that the system could be run at CVDD = 1.67 V, AVDD = 2.70 V ($V_{ref} = 1.2 \text{ V}$), IOVDD = 3.3 V.

The VS1005g typical power consumption decoding a 128 kbit/s MP3 stream to 30 Ω earphones, would be approximately:

 $I_{tot} = ID36MP3 + IA20DB12V30 + IIO33 = 12.0 \text{ mA} + 5.6 \text{ mA} + 1.20 \text{ mA} = 18.8 \text{ mA}.$

This figure needs to be rounded slightly up because the digital current figures don't include reading the file from external memory, or a user interface. Note that the figures assume that all VS1005g peripherals that are not being used have been powered down or their clock gates have been closed (see registers CLK_CF and REGU_CF). Note also that the external memory used for playback, e.g. an SD card, may consume significant amounts of current.

VS1005g Datasheet 6 PACKAGE AND PIN DESCRIPTIONS

6 Package and Pin Descriptions

6.1 LFGA-88 Package, Current: VS1005g from Datecode 1407

LFGA-88 is a 10x10x0.8 mm, lead (Pb) free and RoHS-compliant package. RoHS is a short name of *Directive 2002/95/EC on the restriction of the use of certain hazardous substances in electrical and electronic equipment*.

Package and pin dimensions are shown in Figures 4, 5, 6, and 7. For more information about the LFGA-88 package and its dimensions visit *http://www.vlsi.fi/en/support/download.html*.

Note that in this package, pins extend to the sides of the IC (see Figures 1, 2, 3, 5, 6, and 7).

This revision of the package has been used in all VS1005gs from and including datecode 1407.

It is recommended to use this package revision as the basis for VS1005g PCB designs, even if using ICs with the older LFGA-88 package (Chapter 6.2). For an example of PCB design, see *http://www.vlsi.fi/en/support/evaluationboards/vs1005developerboard.html*.

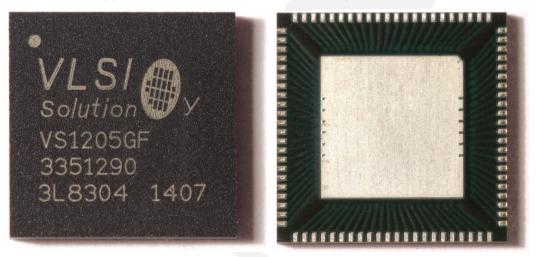


Figure 1: VS1005g LFGA-88 (VS1205G-F product variant) top and bottom view photo

Figure 2: VS1005g LFGA-88 (VS1205G-F product variant) side view photo.

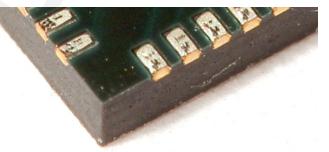
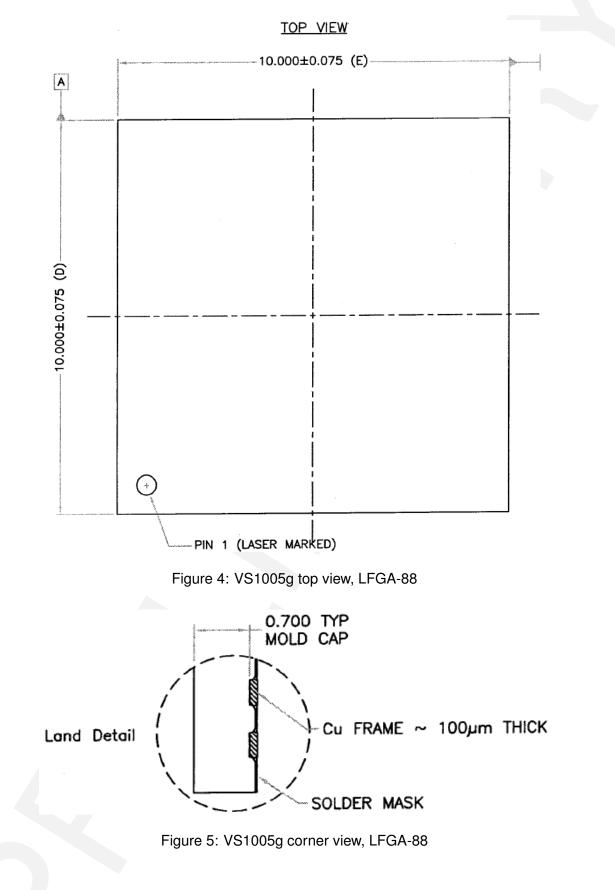
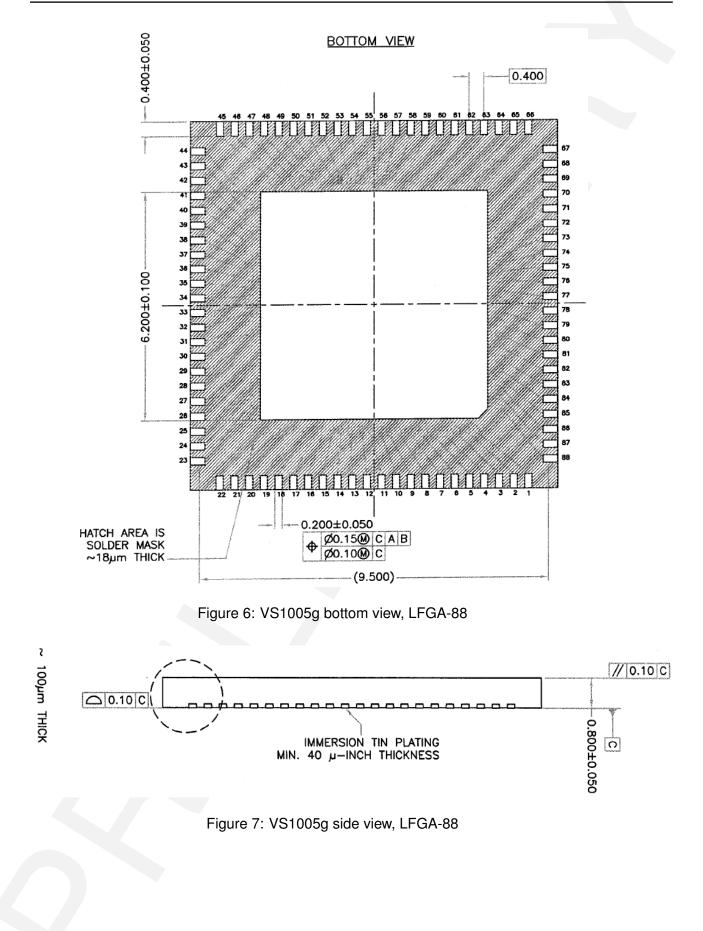




Figure 3: VS1005g LFGA-88 (VS1205G-F product variant) bottom corner view photo.

VS1005g Datasheet 6 PACKAGE AND PIN DESCRIPTIONS

6.2 LFGA-88 Package, Old: VS1005g up to Datecode 1406

LFGA-88 is a 10x10x0.8 mm, lead (Pb) free and RoHS-compliant package. RoHS is a short name of *Directive 2002/95/EC on the restriction of the use of certain hazardous substances in electrical and electronic equipment*.

Package and pin dimensions are shown in Figures 9, 10, and 11. For more information about the LFGA-88 package and its dimensions visit *http://www.vlsi.fi/en/support/download.html*.

Note that the pins do not extend to the sides of the IC (see Figures 8, 10, and 11).

This revision of the package has been used in all VS1005g with an older datecode than 1406.

Do not use this package revision as a basis for PCB design. For new PCB designs, use the current LFGA-88 package (presented in Chapter 6.1) as a basis. It will be compatible with this package, and it will work better with the current package.

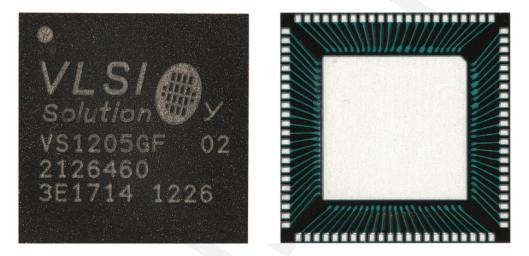


Figure 8: VS1005g old LFGA-88 (VS1205G-F product variant) top and bottom view photo

VS1005g Datasheet 6 PACKAGE AND PIN DESCRIPTIONS

TOP VIEW

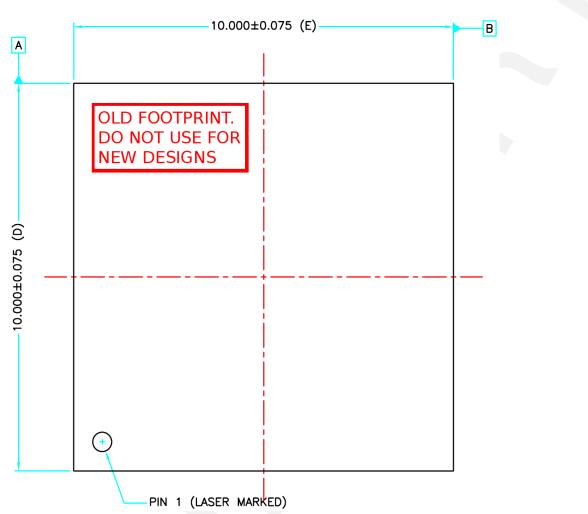
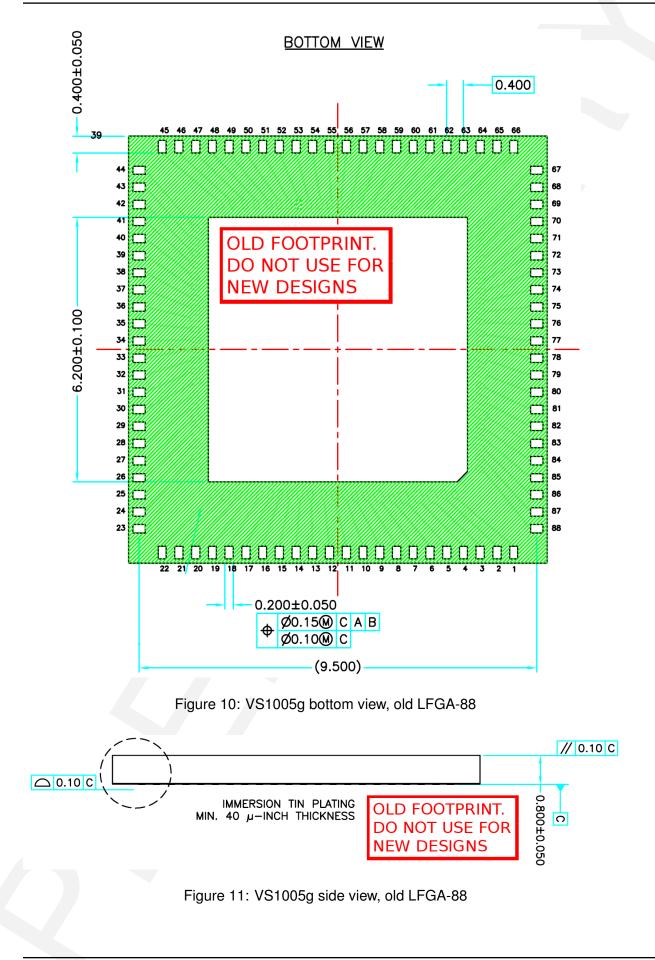



Figure 9: VS1005g top view, old LFGA-88

6 PACKAGE AND PIN DESCRIPTIONS

6 PACKAGE AND PIN DESCRIPTIONS

6.3 Pin Assignments

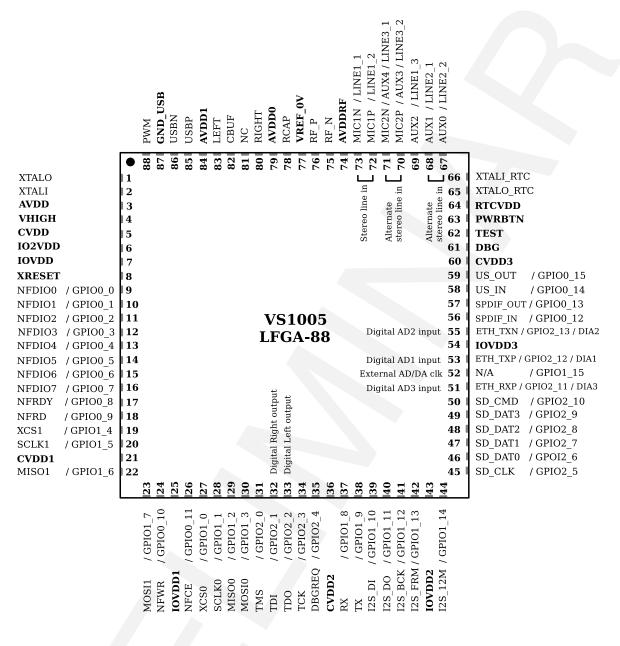


Figure 12: VS1005g 88-pin LFGA pin assignment

6.4 VS1005g Pin Descriptions

Pin Name	LFGA Pin	Pin Type	GPIO Port:Bit	Primary Function
GPLATE	(0)	GND		Center analog and digital ground plate, use multiple vias to create low-impedance connection to ground plane on PCB! See also pin VREF_0V!

Left Pin Name	LFGA	Pin	GPIO	Primary Function	
	Pin	Туре	Port:Bit		
XTALO	1	AO		Crystal output	
XTALI	2	Al		Crystal input	
AVDD	3	APWR		Analog power supply, Regulator output	
VHIGH	4	PWR		Power supply, Regulator input	
CVDD	5	CPWR		Core power supply, Regulator output	
IO2VDD	6	IO2PWR		Serial Flash power supply, Regulator output	
IOVDD	7	IOPWR		I/O power supply, Regulator output	
XRESET	8	DI		Active low asynchronous reset, schmitt-trigger in-	
				put	
NFDIO0 / GPIO0_0	9	DIOPD	0:0	Nand-flash IO0	
NFDIO1 / GPIO0_1	10	DIOPD	0:1	Nand-flash IO1	
NFDIO2 / GPIO0_2	11	DIOPD	0:2	Nand-flash IO2	
NFDIO3 / GPIO0_3	12	DIOPD	0:3	Nand-flash IO3	
NFDIO4 / GPIO0_4	13	DIOPD	0:4	Nand-flash IO4	
NFDIO5 / GPIO0_5	14	DIOPD	0:5	Nand-flash IO5	
NFDIO6 / GPIO0_6	15	DIOPD	0:6	Nand-flash IO6	
NFDIO7 / GPIO0_7	16	DIOPD	0:7	Nand-flash IO7	
NFRDY / GPIO0_8	17	DIO	0:8	Nand-flash READY	
NFRD / GPIO0_9	18	DIO	0:9	Nand-flash /RD	
XCS1 / GPIO1_4	19	DIOPD	1:4	SPI1 XCS	
SCLK1 / GPIO1_5	20	DIOPD	1:5	SPI1 CLK	
CVDD1	21	CPWR		Core power supply, connect to regulator CPWR	
MISO1 / GPIO1_6	22	DIOPD	1:6	SPI1 MISO	

VS1005g Datasheet 6 PACKAGE AND PIN DESCRIPTIONS

Bottom Pin Name	LFGA		GPIO	-	
	Pin	Туре	Port:Bit		
MOSI1 / GPIO1_7	23	DIOPD	1:7	SPI1 MOSI	
NFWR / GPIO0_10	24	DIO	0:10	Nand-flash /WR	
IOVDD1	25	IOPWR		I/O power supply, connect to regulator IOPWR	
NFCE / GPIO0_11	26	DIOPD	0:11	Nand-flash /CE	
XCS0 / GPIO1_0	27	DIOPD	1:0	SPI0 XCS	
SCLK0 / GPIO1_1	28	DIOPD	1:1	SPI0 CLK	
MISO0 / GPIO1_2	29	DIOPD	1:2	SPI0 MISO	
MOSI0 / GPIO1_3	30	DIOPD	1:3	SPI0 MOSI	
TMS / GPIO2_0	31	DIOPD	2:0	JTAG TMS	
TDI / GPIO2_1	32	DIOPD	2:1	JTAG TDI	
TDO / GPIO2_2	33	DIOPD	2:2	JTAG TDO	
TCK / GPIO2_3	34	DIOPD	2:3	JTAG TCK	
DBGREQ/GPIO2_4/VCOOUT	35	DIOPD	2:4	Debug interrupt / VCO output	
CVDD2	36	CPWR		Core power supply, connect to regulator CPWR	
RX / GPIO1_8	37	DIO	1:8	UART RX, connect with $100 \text{ k}\Omega$ to IOVDD if not	
				used for UART	
TX / GPIO1_9	38	DIO	1:9	UART TX	
I2S_DI / GPIO1_10	39	DIOPD	1:10	I2S data in	
I2S_DO / GPIO1_11	40	DIOPD	1:11	I2S data out	
I2S_BCK / GPIO1_12	41	DIOPD	1:12	I2S bit clock	
I2S_FRM / GPIO1_13	42	DIOPD	1:13	I2S frame sync	
IOVDD2	43	IOPWR		I/O power supply, connect to regulator IOPWR	
I2S_12M / GPIO1_14	44	DIOPD	1:14	I2S XTALI clock output	

Right Pin Name	LFGA Pin	Pin Type	GPIO Port:Bit	Primary Function	
SD CLK/GPIO2 5	45	DIOPD	2:5	SD card clock	
SD_DAT0 / GPIO2_6	46	DIO	2:6	SD card data line 0	
SD_DAT1 / GPIO2_7	47	DIO	2:7	SD card data line 1	
SD_DAT2 / GPIO2_8	48	DIO	2:8	SD card data line 2	
SD_DAT3 / GPIO2_9	49	DIO	2:9	SD card data line 3	
SD_CMD / GPIO2_10	50	DIO	2:10	SD card cmd line	
ETH_RXP/GPIO2_11/DIA3	51	DIOPD	2:11	Ethernet RXP / Digital ADC 3 input	
GPIO1_15	52	DIOPD	1:15	General-Purpose I/O Port 1, bit 15	
ETH_TXP/GPIO2_12/DIA1	53	DIOPD	2:12	Ethernet TXP / Digital ADC 1 input	
IOVDD3	54	IOPWR	7	I/O power supply, connect to regulator IOPWR	
ETH_TXN/GPIO2_13/DIA2	55	DIOPD	2:13	Ethernet TXN / Digital ADC 2 input	
SPDIF_IN / GPIO0_12	56	DIOPD	0:12	S/PDIF data in	
SPDIF_OUT / GPIO0_13	57	DIOPD	0:13	S/PDIF data out	
GPIO0_14	58	DIOPD	OPD 0:14 General-Purpose I/O Port 0, bit 14		
GPIO0_15	59	DIOPD	0:15	General-Purpose I/O Port 0, bit 15	
CVDD3	60	CPWR		Core power supply, connect to regulator CPWR	
DBG	61	DI		Debug mode enable (active high), connect to	
				ground	
TEST	62	DI		Test mode input (active high), connect to ground	
PWRBTN	63	AIO		Power button for Regulator startup (and Power Key)	
RTCVDD	64	RTCPWR		Real time clock power supply	
XTALO_RTC	65	AO		Real time clock crystal output	
XTALI_RTC	66	AI		Real time clock crystal input	

6 PACKAGE AND PIN DESCRIPTIONS

Top Pin Name	LFGA	Pin	GPIO	Primary Function	
•	Pin	Туре	Port:Bit		
AUX0 / LINE2_2	67	Al		SAR AD input 0 / Line 2 input 2	
AUX1 / LINE2_1	68	Al		SAR AD input 1 / Line 2 input 1	
AUX2 / LINE1_3	69	Al		SAR AD input 2 / Line 1 input 3	
MIC2P / AUX3 / LINE3_2	70	Al		Microphone 2 pos. differential input, self-biasing / SAR AD input 3 / Line 3 input 2	
MIC2N / AUX4 / LINE3_1	71	Al		Microphone 2 neg. differential input, self-biasing / SAR AD input 4 / Line 3 input 1	
MIC1P / LINE1_2	72	Al		Microphone 1 pos. differential input, self-biasing / Line 1 input 2	
MIC1N / LINE1_1	73	Al		Microphone 1 neg. differential input, self-biasing / Line 1 input 1	
AVDDRF	74	APWR1V8		1.8V RF power supply, connect to regulator CPWR	
RF_N	75	Al		RF FM antenna negative differential input	
RF_P	76	Al		RF FM antenna positive differential input	
VREF_0V	77	Al		Analog 0 V reference, connect to both GPLATE and RCAP capacitor without vias in PCB ¹	
RCAP	78	AIO		Filtering capacitance for reference	
AVDD0	79	APWR		Analog power supply, connect to regulator APWR	
RIGHT	80	AO		Right channel output	
N/A	81	N/A		Not connected pin	
CBUF	82	AO		Common voltage buffer for headphones	
LEFT	83	AO		Left channel output	
AVDD1	84	APWR		Analog power supply, connect to regulator APWR	
USBP	85	AIO		USB differential + in / out, controllable 1.5k Ω pull-up	
USBN	86	AIO		USB differential - in / out	
GNDUSB	87	GND		USB ground, connect to ground network in PCB and GPLATE	
PWM	88	DO		PWM output	

¹ Pin 77 name has been changed from AGND to VREF_0V in year 2020. New schematics and symbols should use the new name.

Pin type descriptions:

Туре	Description	Туре	Description
DI	Digital input, CMOS input pad	GND	Ground
DIPD	Digital input with weak pull-down re-	PWR	Main power supply
	sistor (approx. 1 M Ω)	APWR	Analog power supply pin
DO	Digital output, CMOS output pad	APWR1V8	Analog power supply pin, 1.8V
DIO	Digital input/output	RTCPWR	Real time clock power supply pin, 1.8V
DIOPD	Digital input/output with weak pull-	CPWR	Core power supply pin
	down resistor in input (approx. 1 M Ω)	IOPWR	I/O power supply pin
AI	Analog input		
AO	Analog output		
AIO	Analog input/output		

Package bottom plate is a ground net and it is connected to ground network in PCB.

NOTE: Unused inputs should not be left floating. Tie either HIGH or LOW as appropriate. At power-up all GPIO is three stated and current leakage from IOVDD is cut. Outputs that are three-statable should only be pulled high or low to ensure signals at power-up and in standby.

Alternate pin functions in VS1005g package Pin Name LFGA Pin Type Function Pin 71 AI Analog Line input 1 Alternate analog input pin for Line input 1 Analog Line input 2 70 AI Alternate analog input pin for Line input 2 Analog Line input 1 68 AI Alternate analog input pin for Line input 1 Analog Line input 2 67 AI Alternate analog input pin for Line input 2 Digital DA/AD Clock 52 DO Digital DA/AD clock output, XTALI/2/4 DAC right channel digital output, XTALI/2 **Digital DAC Right** 32 DO **Digital DAC Left** DO DAC left channel digital output, XTALI/2 33 Digital ADC 1 input. XTALI/2 DIA1 53 DIPD DIA2 Digital ADC 2 input, XTALI/2 55 DIPD DIA3 51 DIPD Digital ADC 3 input, XTALI/2 TMS DIPD Jtag Test Mode Select 31 Jtag Test Data In TDI DIPD 32 TDO 33 DO Jtag Test Data Out TCK DIPD 34 Jtag Test Clock DBGREQ 35 Hardware debug state pin DO

6.4.1 PCB Layout Recommendations

The following recommendations should be followed to ensure reliable operation.

- Analog power nets that are connected to regulator APWR/CPWR output should have bypass capacitors.
- USBP and USBN traces should be kept within 2mm of each other and with preferred length of 20-30mm (max 75mm). A solid ground plane is preferred under USBP and USBN traces.
- USBP and USBN traces should be very close to same length, drawn together and their characteristic differential impedance 90 Ohms
- No vias are allowed in USBP or USBN traces, only 45 degree angles should be used.
- USBP and USBN traces should be isolated from all other signal traces.
- RF_P and RF_N traces should be isolated from all other signal traces.

EXAMPLE SCHEMATIC

7 Example Schematic

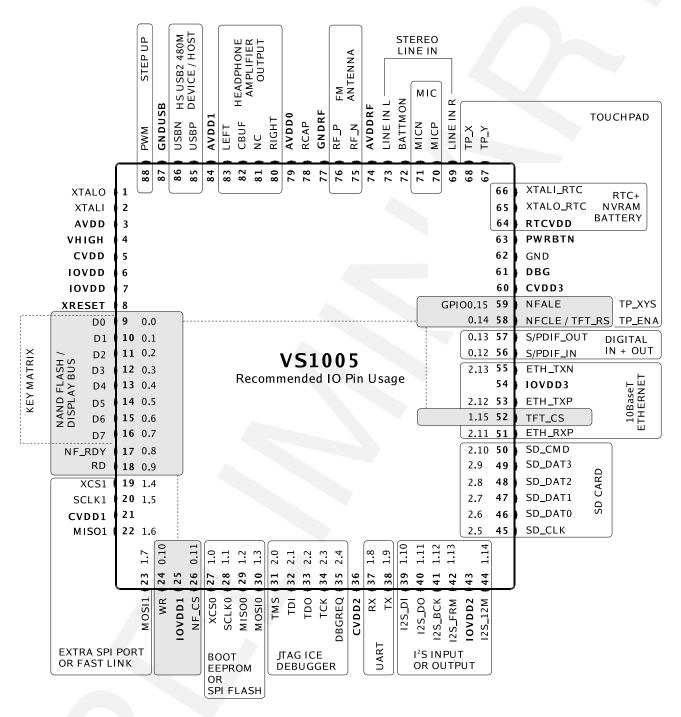


Figure 13: VS1005g default pin usage

Default pin usage is shown in Figure 13. For an example schematic, see the VS1005g Developer Board schematics, available at http://www.vlsi.fi/en/products/vs1005.html.

7.1 Important Tips and Guidelines for Designing VS1005g Products

In this Chapter there are tips and guidelines on how to design functioning products that use VS1005g.

Please study this list carefully, because all notes here are things that have caused problems or needed fixing in at least some PCBs. Following these guidelines will make it much more likely that your PCB will both work, and make it possible to debug your system.

7.1.1 Design for Debuggability and Productability

- Provide debug header on your PCB: Provide pads to solder pins for VHIGH, RX, TX and GND. Without these pins, your product may be impossible to debug or produce. Both RX and TX need pull-up resistors.
- Consider how the initial flash contents is to be loaded in production. Provide USB pins on pin headers (if your product doesn't have USB port) for pushing the operating system files to the board during production.
- For writing to the external SPI flash in your system (if applicable), you need a flash that has 4K sector erase capability.
- Provide a ground pin on the PCB for connecting the oscilloscope probe ground.
- SD card can also theoretically be used for initial flash programming during production.

7.1.2 Choose Carefully Which GPIO Pins You Use

Software for the VS1005g consists of several parts, which need to work together. A VS1005g product typically runs the VSOS Kernel, some drivers and other libraries, and application code. It's not practical to modify all the pre-existing code to change which GPIO pins it uses. Furthermore, most digital pins in the VS1005g have some fixed functionality, such as SPI bus pins, which you need to take into consideration when selecting which GPIO pins you use.

To determine which pins you can or should use in your product, please study the following list carefully. You can also use the VS1005g Developer Board schematic as a guideline.

The VSOS Kernel needs to use the following pins:

- XCS0 (GPIO 1_1, the SPI flash chip select), NFCE (GPIO0_11, the NAND flash chip select) and GPIO1_15 (the LCD display chip select) for various purposes, and the kernel presumes that there is a 74HC138 address decoder connected to these pins so the kernel constantly writes to all three.
- NFRDY (Nand Flash Ready) pin needs a pull-up, otherwise booting may get stuck in waiting for a (non-existent) Nand Flash to become ready. The boot dead-locks if there is a floating/high NFCE with a floating/low NFRDY. For proper operation, always pull NFRDY high during boot.
- Some bus (usually SPI0) for communicating with an external system SPI flash memory.
- UART for console messages and debugging. Both RX and TX need pull-up resistors on the PCB. Floating RX will eventually cause a deadlock and floating TX will cause spurious transmissions at reset.

EXAMPLE SCHEMATIC

- GPIO0_7 for determining the boot voltage and GPIO0_0 GPIO0_3 for determining the boot configuration and for mechanical push-buttons whenever there are some.
- GPIO0_0 GPIO0_7 together with the chip select pins for switching external powers such as SD card regulator or USB regulator on and off: Whenever a driver calls SetPower(), pins GPIO0_0 - GPIO0_7, XCS0, NFCE and GPIO1_15 are written to - if this causes problems with your board, rewrite the SetPower function in the Kernel.
- GPIO0_0 GPIO0_3, TMS, TDI and DBG are also checked by the ROM firmware at boot: if they are all high, the internal flash is erased. To prevent this from happening inadvertently, make sure that at least one of these pins is pulled low (with 10K...100K resistor) during boot.

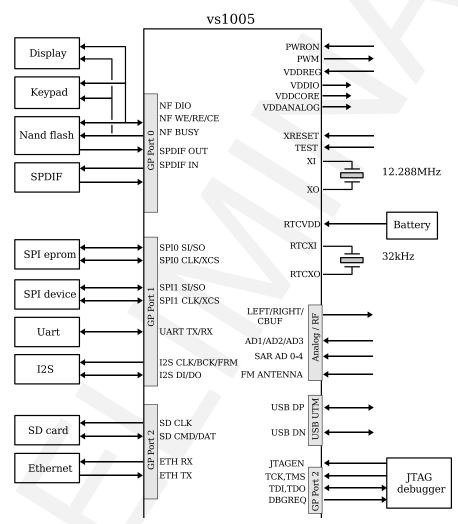
Other buses and their pins are largely left unused (although they might get an initial value during bootup).

The pins for those peripherals that you and the VSOS Kernel don't use, can be used as GPIO pins. For example GPIO2_0 through GPIO2_3 (the JTAG pins TMS, TDI, TDO and TCK) are good pins to be used as GPIO pins.

7.1.3 Design for Reliability

- VS1005G: Connect FVDD (pin 6) to IOVDD (pin 7). This is a work-around for a VS1005G boot timing criticality that causes boot problems in early VS1005G production lots.
- Provide the SD card with its own regulator.
- Connect the SD card regulator to some VS1005 pin so that the SD card can be powered up, down and resetted. Otherwise it might not work at all. For 3V IOVDD systems, a good solution is to use GPIO0_7, a pull-up resistor, active high enabled regulator and AMPBCONF.DL3 driver to control the SD card power.
- Use somewhat smaller capacitors for the crystal than is customary. The oscillator starts more reliably with today's low power crystals when the capacitors are smaller. Instead of 30 pF use something like 10 pF. And don't forget the 1 MΩ parallel load resistor.

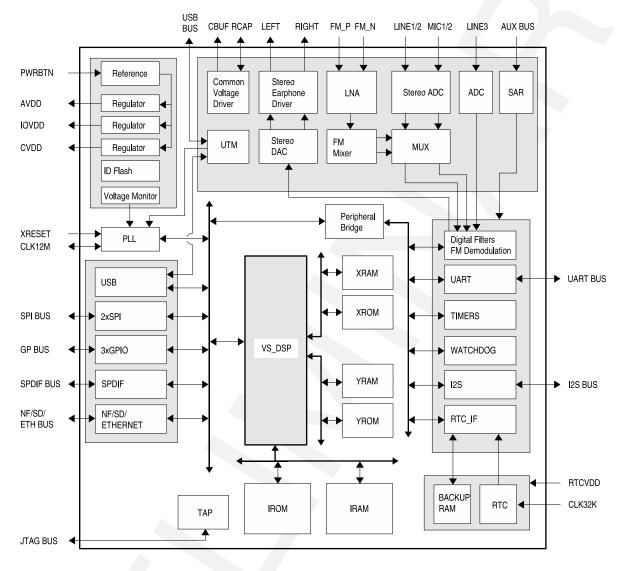
7.1.4 Design for Quality


- Provide good ground and enough bypass capacitors.
- For PCB ground layout considerations, see http://www.vsdsp-forum.com/phpbb/viewtopic.php?f=10&t=1101
- Soldering and stencil design guide is available upon request from VLSI Solution.

VS1005G GENERAL DESCRIPTION

8 VS1005g General Description

VS1005g architecture is based on VS DSP core. VS DSP core architecture is described in VS_DSP User's Manual. Chip is powered with internal regulator which provides voltages for three separate power domains. The core and periphery I/O power domains can be driven off separately, allowing simple I/O interfacing and minimizing power consumption. RTC has its own power supply which enables the RTC usage when the rest of the chip is powered down. RTC also includes a small backup ram. VS1005g has two clock domains which are clocked by PLL. Analog interfaces are clocked with a XTALI clock but the dsp, digital intarfaces and memories are clocked with a multiplied clock. VS1005g external interfaces are shown in Figure 14.



8.1 VS1005g Internal Architecture

VS1005g block diagram is shown in Figure 15.

8.1.1 Regulator Section

The VHIGH pin in the regulator section is used as a common main power supply for voltage regulation. This input is connected to three internal regulators, which are activated when the PWRBTN pin voltage is kept above 0.9 V for about one millisecond, so that AVDD starts to rise and reaches about 1.5 V. After the PWRBTN has given this initial start current, the regulators reach their default voltages even if the PWRBTN is released. VHIGH must be sufficiently (about 0.3 V) above the highest regulated power (normally AVDD) so that regulation can be properly performed.

The PWRBTN state can also be read by software from ANA_CF1 bit ANA_CF1_PWRBTN, so

VS1005g Datasheet 8 VS1005G GENERAL DESCRIPTION

it can be used as one of the user interface buttons. See for the register documentation for details.

A power-on reset monitors the core voltage and asserts reset if CVDD drops below the CMON level. It is also possible to force a reset by keeping PWRBTN pressed for longer than approximately 5.6 seconds. This feature can be disabled by software. A watchdog counter and the XRESET pin can also generate a reset for the device.

Resets do not cause the regulators to shut down, but they restore the default regulator voltages. After boot the firmware and user software can change the voltages.

Return to power-off is possible only with active software control (VSDSP writes the regulator shutdown bits), or when VHIGH voltage is removed for a sufficiently long time. In the default firmware player the power button has to be pressed for 2 seconds to make the software power-down the system and turn the regulators off.

8.1.2 I/O Section

IOVDD is used for the level-shifters of the digital I/O and crystal oscillator. The regulated IO voltage is internally connected. The IOVDD regulator output must be connected to IOVDD1, IOVDD2 and IOVDD3 input pins. Proper bypass capacitors should also be used.

The firmware uses GPIO0_7 to select I/O voltage level. After reset the I/O voltage is 1.8 V. If GPIO0_7 has a pull-down resistor, 1.8 V I/O voltage is used. If GPIO0_7 has a pull-up resistor, 3.3 V I/O voltage is used.

8.1.3 Digital Section

All digital logic except the real time clock is powered from core voltage CVDD. The regulated core voltage is internally connected. The CVDD regulator output must be connected to CVDD1, CVDD2 and CVDD3 input pins. CVDD pins should have proper bypass capacitors.

Real time clock power pin can be connected to CVDD net or it can have its own power supply which enables its use during chip power-down. The inputs and outputs of the RTC logic have level shifters but the RTCVDD voltage should not exceed the CVDD voltage range.

Clock

The crystal amplifier uses a crystal connected to XTALI and XTALO. An external logic-level input clock can also be used. When VS1005g is used with FS USB, 12 MHz crystal allows lower power consumption. With FS/HS USB the input clock of 12 MHz or 12.288 MHz is recommended.

An internal phase-locked loop (PLL) generates the internal clock by multiplying the input clock by $1.0 \times$, $1.5 \times$, ..., $8.0 \times$. When USB is connected, the clock is 5.0×12 MHz = 60 MHz. When the player is active, the clock will be automatically changed according to the requirements of the song being played.

XRESET disables the clock buffer and puts the digital section into powerdown mode.

VS1005g Datasheet ⁸ VS1005G GENERAL DESCRIPTION

In usb suspend state the core clock is switced to RTC clock and the clock oscillator is powered down.

$VSDSP^4$

VSDSP⁴ is VLSI Solution's proprietary digital signal processor with a 32-bit instruction word, two 16-bit data buses, and both 16-bit and 32/40-bit arithmetic.

IROM, XROM, and YROM contain the firmware, including the default player application. Most of the instruction RAM and some of the X and Y data RAM's can be used to customize and extend the functionality of the player.

For software customization the firmware supports nand flash and SD card boot. The VS1005gxF version can use also the internal serial flash as a boot device.

UART

An asynchronous serial port is used for debugging and special applications. The default speed is 115200 bps. The UART operates in 8N1 mode (8 data bits, no parity, 1 stop bit). RX and TX pins can also be used for general-purpose I/O when the UART is not required.

SPIs

A synchronous serial port peripheral is used for SPIEEPROM boot, and can be used to access other SPI peripherals (for example LCD or SED) by using another chip select. The SPI0 is only used for boot if the XCS0 pin has a high level after reset (pull-up resistor attached). These pins can also be used for general-purpose I/O when the SPI is not required.

The default player uses MISO0 and MOSI0 for LED outputs.

NAND FLASH Interface

The NAND FLASH peripheral calculates a simple error-correcting code (ECC), and automates some of the communication with a NAND FLASH chip. The firmware uses the peripheral to access both small-page (512+16 B pages) and large-page (2048+64 B pages) NAND FLASH chips. The first sector in the FLASH tells the firmware how it should be accessed.

The NAND FLASH interface pins can also be used as general-purpose I/O. The default firmware uses GPIO0_[4:0] for keys, and GPIO0_[7:6] for other purposes. Pull-up and pull-down resistors must be used for these connections so that the data transfer to and from the NAND FLASH isn't disturbed when keys are pressed.

SD Card Interface

The SD card interface automates some of the communication with an SD card. Peripheral supports 1-bit and 4-bit data transfers.

The SD card interface pins can also be used as general-purpose I/O.

Ethernet Controller

Ethernet Controller is an interface to 10base-t network. The interface uses digital signal levels and external components are required to connect to ethernet. The core clock must be switched to 60 MHz when ethernet peripheral is used.

The ethernet interface pins can also be used as general-purpose I/O.

USB

The USB peripheral handles the USB 2.0 Full Speed harware protocol. Low speed communication is not supported, but is correctly ignored. The USBP pin has a software-controllable $1.5k\Omega$ pull-up resistor.

A control endpoint (1 IN and 1 OUT) and up to 6 other endpoints (3 IN and 3 OUT) can be used simultaneously. Bulk, interrupt, and isochronous transfer modes are selectable for each endpoint. USB receive from USB host to device (OUT) uses a 2 KiB buffer, thus allowing very high transfer speeds. USB transmit from device to USB host (IN) also uses a 2 KiB buffer and allows all IN endpoints to be ready to transmit simultaneously. Double-buffering is also possible, but not usually required.

The firmware uses the USB peripheral to implement both USB Mass Storage Device and USB Audio Device. Which device is activated depends on the state of GPIO0_6 when the USB connection is detected. If GPIO0_6 has a pull-up resistor, VS1005g appears as an USB Audio Device. If GPIO0_6 has a pull-down resistor, VS1005g appears as an USB Mass Storage Device.

8.2 Analog Section

The third regulator provides power for the analog section.

The analog section consists of digital to analog converters, an earphone driver and FM receiver. This includes a buffered common voltage generator (CBUF, around 1.2 V) that can be used as a virtual ground for headphones.

The regulator AVDD output pin must be connected to AVDD1 and AVDD2 pins with proper bypass capacitors, because they are not connected internally. The AVDDRF pin is connected to regulator CVDD pin with proper bypass capacitors or with external regulator from VHIGH.

The USB pins use the internal AVDD voltage, and the firmware configures AVDD to 3.6 V when USB is attached.

AVDD voltage level can be monitored by software. Currently the firmware does not take advantage of this feature.

CBUF contains a short-circuit protection. It disconnects the CBUF driver if pin is shorted to ground. In practise this only happens with external power regulation, because there is a limit to how much power the internal regulators can provide.

VS1005g Datasheet OSCILLATOR AND RESET CONFIGURATION

9 Oscillator and Reset Configuration

The reset module gathers reset sources and controls the system's internal reset signals. Reset Sources are:

- POR : Power-On reset and CVDD voltage monitor
- XRESET : External active low reset pin
- *wdog_rst* : Watchdog timer reset
- *dbg_rst* : Debugger reset
- PWRBTN : Power Button reset after 5 seconds

Two clock sources can be used :

- 11 MHz 13 MHz oscillator (recommended 12.288 MHz)
- 32 kHz RTC oscillator

10 Firmware Operation

The firmware uses the following pins (see the example schematics in Section 7):

Pin	Description
PWRBTN	High level starts regulator, is also read as the Power button Key.
GPIO0_0	external 1 M Ω pull-down resistor, Key 1 connects a 100 k Ω pull-up resistor 1
GPIO0_1	external 1 M Ω pull-down resistor, Key 2 connects a 100 k Ω pull-up resistor
GPIO0_2	external 1 M Ω pull-down resistor, Key 3 connects a 100 k Ω pull-up resistor
GPIO0_3	external 1 M Ω pull-down resistor, Key 4 connects a 100 k Ω pull-up resistor
GPIO0_4	external 1 M Ω pull-down resistor, Key 5 connects a 100 k Ω pull-up resistor
GPIO0_6	external pull-down resistor for USB Mass Storage Device, pull-up for USB
	Audio Device
GPIO0_7	external pull-down resistor for 1.8 V I/O voltage, pull-up resistor for 3.3 V I/O
	voltage
NFCE	external pull-up resistor for normal operation
XCS	external pull-up to enable SPI EEPROM boot
USBN	external 1 M Ω pull-up
USBP	external 1 M Ω pull-up

 1 Smaller pull-down resistors may be needed for keys if the capacitance on the GPIO pins is high.

Boot order:

Stage	Description
Power on	Power button (PWRBTN) pressed when VHIGH has enough volt-
	age
Reset	Power-on reset, XRESET, or watchdog reset causes software
	restart
UART Boot	Almost immediately after power-on UART can be used to enter
	emulator mode. UART boot remains possible after the following
	steps, too.
SPI EEPROM boot	If XCS is high, SPI Boot is tried.
NAND FLASH probed	If NFCE is high, NAND FLASH is checked.
SD boot	If VS1005G.SYS exists, it is used as a boot file.
Default firmware	The firmware in ROM takes control.

10 FIRMWARE OPERATION

10.1 SPI Boot

The first boot method is SPI EEPROM. If GPIO1_0 is low after reset, SPI boot is skipped. If GPIO1_0 is high, it is assumed to have a pull-up resistor and SPI boot is tried.

First the first four bytes of the SPI EEPROM are read using 16-bit address. If the bytes are "VLS5" (for protected host) or "WLS5" (for unprotected host), a 16-bit EEPROM is assumed and the boot continues. If the last 3 bytes are read as "VLS", a 24-bit EEPROM is assumed and boot continues in 24-bit mode. Both 16-bit and 24-bit EEPROM should have the "VLS5" or "WLS5" string starting at address 0, and the rest of the boot data starting at address 4. If no identifier is found, SPI EEPROM boot is skipped.

Boot records are read from EEPROM until an execute record is reached. Unknown records are skipped using the data length field.

Byte	Description
0	type 0=I-mem 1=X-mem 2=Y-mem 3=execute
1,2	data len lo, hi – data length in bytes
3,4	address Io, hi – record address
5	data*

10.2 NAND FLASH Probe

If NAND FLASH chip select (NFCE) is high, a NAND FLASH is assumed to be present and the first sector is read. The access methods (nandTypes 0..5) are tried in order to find the "VLN5" identification. If the first bytes are "VLN5", a valid boot sector is assumed. This sector gives the necessary information about the NAND FLASH so that it can be accessed in the right way.

	NandF	lash Header
Byte	Value	Description
0, 1, 2, 3	0x56 0x4c 0x4E 0x35	'V' 'L' 'N' '5' – Identification
4,5	0x00 0x03	NandType (0x0003 = large-page with 3-byte
		block address), See table
6	0x08	BlockSizeBits ($2^8 * 512 = 128$ KiB per block)
7	0x13	FlashSizeBits ($2^{19} * 512 = 256$ MiB flash)
8,9	0x00 0x46	NandWaitNs – NAND FLASH access time in ns
		(e.g. 0x46)
10, 11	0x00 0x01	Number of 512-byte blocks for boot (e.g.
		0x0001)
12, 13	0x00 0x00	EWRD = How many words to skip before 'B' 'o'
		'O' 't' string
1414+EWRD-1		Extra words (this field exists only if EWRD != 0)
(14, 15, 16, 17)		
+ EWRD	0x42 0x6f 0x4f 0x74	'B' 'o' 'O' 't' – Optional boot ident
18+EWRD 511		code

	NandFlash Type Configuration													
Low byte (byte 0x4)	(byte 0x4)													
0 512+16 B small-page flash with 2-byte block address (\leq 32 MiB)														
1	2048+64 B large-page flash with 2-byte block address (\leq 128 MiB)													
2 512+16 B small-page flash with 3-byte block addr. (> 32 MiB, \leq														
3	2048+64 B large-page flash with 3-byte bl.addr. (> 128 MiB, \leq 32 GiB)													
4	512+16 B small-page flash with 4-byte block address (> 8 GiB)													
5 2048+64 B large-page flash with 4-byte block address (> 32 GiB)														

If bytes (14-16)+EWRD contain "BoOt", the value in bytes 10 and 11 determines how many sectors are read from NAND-flash. Note that 0 is interpreted as 1. After the data is read into memory, the boot records in this data are processed, transferring code and data sections into the right places in memory and possibly executed. If an unknown boot record is encountered, booting is stopped and control returns to the firmware code.

	NandFlash Record Configuration
Code byte	Description
17,16	type 0x8000=I-mem 0x8001=X-mem 0x8002=Y-mem 0x8003=execute
19, 18	data length in (words -1) : 0 = 1 word, 1 = 2 words, etc.
21,20	address – record address
22	data

10.3 UART Boot/Monitor

When byte 0xef is sent to RX at 115200 bps, the firmware enters monitor mode and communicates with **vs3emu**. Memory contents can be displayed, executables can be loaded and run, or the firmware code can be restarted or continued.

The UART is also a convenient way to program the NAND FLASH boot sector(s) or the SPI EEPROM.

10.4 Default Firmware Features

10.4.1 SD Card Test

If an SD card is connected to VS1005g, the firmware searches for a boot file file called VS1005G.SYS. If found, VS1005g executes the code in that file.

If VS1005G.SYS is not found, the firmware tries to open the file TEST.MP3. If successful, that file is played back.

Note: Playback is provided only as a functional test. Playback quality is not indicative of VS1005g default playback quality.

Note: MP3 playback is not supported by VS8005g.

10.4.2 USB Mass Storage and Audio Device

If no SD card boot or test file was found, the firmware goes into USB detection mode.

When USB cable insertion is detected by the firmware, USB handling code is started. The internal clock is configured to 48 MHz (assuming XTALI = 12.288 MHz), the analog power is configured to 3.6 V, the USB peripheral is initialized, and the USB pull-up resistor is enabled.

If GPIO0_6 has a pull-up resistor, VS1005g appears as an USB Audio Device. The audio device contains a HID interface which allows for code to be loaded to VS1005g with a custom program. If GPIO0_6 has a pull-down resistor, VS1005g appears as an USB Mass Storage Device.

If during power-on the NAND FLASH contained a valid boot sector, the NAND FLASH disk will be used with the mass storage device. The NAND FLASH disk requires a filesystem-level formatting before it can be used.

10 FIRMWARE OPERATION

10.5 Supported Audio Decoders

VS1005g ROM firmware supports decoding MP3 files (only VS1005 and VS1205). Support for other file formats is implemented as link libraries.

	Conventions											
Mark	Description											
+	Format is supported											
-	Format exists but is not supported											
	Format doesn't exist											

10.5.1 Supported MP3 (MPEG layer III) Decoder Formats

The decoder supports all MP3 samplerates and bitrates.

MPEG 1.0¹:

Samplerate / Hz		Bitrate / kbit/s												
	32	40	48	56	64	80	96	112	128	160	192	224	256	320
48000	+	+	+	+	+	+	+	+	+	+	+	+	+	+
44100	+	+	+	+	+	+	+	+	+	+	+	+	+	+
32000	+	+	+	+	+	+	+	+	+	+	+	+	+	+

MPEG 2.0¹:

Samplerate / Hz		Bitrate / kbit/s												
	8	16	24	32	40	48	56	64	80	96	112	128	144	160
24000	+	+	+	+	+	+	+	+	+	+	+	+	+	+
22050	+	+	+	+	+	+	+	+	+	+	+	+	+	+
16000	+	+	+	+	+	+	+	+	+	+	+	+	+	+

MPEG 2.5¹:

Samplerate / Hz		Bitrate / kbit/s												
	8	16	24	32	40	48	56	64	80	96	112	128	144	160
12000	+	+	+	+	+	+	+	+	+	+	+	+	+	+
11025	+	+	+	+	+	+	+	+	+	+	+	+	+	+
8000	+	+	+	+	+	+	+	+	+	+	+	+	+	+

¹ All variable bitrate (VBR) formats are also supported.

10.6 Supported Audio Encoders

VS1005g ROM firmware supports encoding MP3 files (only VS1205). Support for other file formats is implemented as link libraries.

10.6.1 Supported MP3 (MPEG layer III) Encoder Formats

VS1005g supports all MP3 samplerates and bitrates, in stereo and mono, both with constant bitrate (CBR) or variable bitrate (VBR). The following tables apply to constant bitrate.

	Conventions
Symbol	Description
++	Format is supported and recommended for this channel configuration and bitrate.
+	Format is supported.
X	Format is supported but use is strongly discouraged for quality reasons.
V	Format is supported but for best quality lower samplerate with same bitrate is recommended.
<	Format is supported but lower bitrate will give same quality.
-	Format exists but isn't supported.
	Format doesn't exist.

MPEG 1.0 layer III (MP3 full rates), stereo:

Samplerate / Hz		Bitrate / kbit/s, stereo												
	32	40	48	56	64	80	112	128	160	192	224	256	320	
48000	V	V	V	V	V	V	V	+	+	++	++	++	++	++
44100	V	v	V	v	v	V	+	+	+	+	+	+	+	+
32000	V	V	v	V	v	+	+	++	++	+	+	+	+	<

MPEG 2.0 & 2.5 layer III (MP3 low rates), stereo:

Samplerate / Hz		Bitrate / kbit/s, stereo												
	8	16	24	32	40	48	56	64	80	96	112	128	144	160
24000	Х	V	V	v	V	v	V	+	++	++	+	+	+	<
22050	Х	V	V	v	v	V	+	+	+	+	+	+	<	<
16000	Х	V	V	v	+	+	+	++	+	+	+	+	<	<
12000	V	V	V	+	++	++	++	+	+	+	+	+	<	<
11025	V	V	V	+	+	+	+	+	+	+	+	+	<	<
8000	++	++	++	++	+	+	+	+	+	+	+	<	<	<

MPEG 1.0 layer III (MP3 full rates), mono:

Samplerate / Hz		Bitrate / kbit/s, mono												
	32	40	48	56	64	80	96	112	128	160	192	224	256	320
48000	V	V	V	+	+	++	++	++	++	++	++	++	++	<
44100	V	V	V	+	+	+	+	+	+	+	+	+	+	<
32000	+	+	+	++	++	+	+	+	+	+	+	<	<	<

MPEG 2.0 & 2.5 layer III (MP3 low rates), mono:

Samplerate / Hz		Bitrate / kbit/s, mono												
	8	16	24	32	40	48	56	64	80	96	112	128	144	160
24000	V	V	+	+	+	++	+	+	+	+	+	<	<	<
22050	v	v	+	+	+	+	+	+	+	+	+	<	<	<
16000	V	v	+	++	++	+	+	+	+	<	<	<	<	<
12000	v	v	++	+	+	+	+	+	<	<	<	<	<	<
11025	V	v	+	+	+	+	+	+	<	<	<	<	<	<
8000	++	++	+	+	+	+	<	<	<	<	<	<	<	<

11 VS1005g Peripherals and Registers

11.1 The Processor Core

VS_DSP is a 16/32-bit DSP processor core that also has extensive all-purpose processor features. VLSI Solution's free VSIDE Software Package contains all the tools and documentation needed to write, simulate and debug Assembly Language or Extended ANSI C programs for the VS_DSP processor core. VLSI Solution also offers a full Integrated Development Environment VSIDE for full debug capabilities.

11.2 VS1005g Memory Map

VS1005g's Memory Map is shown in Figure 16. Note that when loaded, the VLSI Solution Operating System VSOS allocates some User Instruction RAM, User X Data RAM, and User Y Data RAM.

	Instruction (32-bit)		X (16–bit))	Y (16-bit)	
0x0000	Zero		Zero		Zero	0x0000
0x0010	System Vectors		Stack		Stack	0x0010
0x0080			Stuck		Juck	0x0080
0x0400			System RAM		System RAM	0x0400
0x0500						0x0500
0x0870	User Instruction RAM		User X Data RAM		User Y Data RAM	0x0870
0x7000						0x7000
0x7B00	1		System		Audio Buffer	0x7B00
0x7FC0	System Vectors		Buffers			0x7FC0
0x8000	Instruction ROM		X Data ROM		Y Data ROM	0x8000
0xF400					USB RX Buffer	0xF400
0xF800					USB TX Buffer	0xF800
0xFC00 0xFFFF					Hardware Registers	0xFC00 0xFFFF
041.1.1.1		4				UNITIT

Figure 16: VS1005g's memory map

11.3 VS1005g Peripherals

System peripherals are located in Y-address space. The peripherals that use PLL clock are in addresses 0xFC00 - 0xFD3F and peripherals that use XTALI clock are in addresses 0xFE00 - 0xFEDF.

Peripheral address spaces are summarized in the following table:

VS1005g peripheral address ranges								
Address	Device							
PLL clocked peripl	nerals							
0xFC00 - 0xFC1F	Interrupt controller							
0xFC20 - 0xFC3F	DSP interface registers							
0xFC40 - 0xFC4F	SPI 0							
0xFC50 - 0xFC5F	SPI 1							
0xFC60 - 0xFC65	10base-t ethernet controller							
0xFC66 - 0xFC6C	DSP interface for peripheral data buffer							
0xFC70 - 0xFC76	Reed-Solomon codes							
0xFC77 - 0xFC7A	Nand flash interface							
0xFC7B - 0xFC7F	SD card interface							
0xFC80 - 0xFC9F	Full Speed USB							
0xFCA0 - 0xFCBF	16-bit GPIO port 0							
0xFCC0 - 0xFCDF	16-bit GPIO port 1							
0xFCE0 - 0xFCFF	14-bit GPIO port 2							
0xFD00 - 0xFD1F	S/PDIF							
XTALI clocked peri	pherals							
0xFE00 - 0xFE1F	UART							
0xFE20 - 0xFE3F	Watchdog							
0xFE40 - 0xFE5F	FM and A/D interface							
0xFE60 - 0xFE7F	I2S							
0xFE80 - 0xFE9F	Timers							
0xFEA0 - 0xFEBF	RTC interface							
0xFEC0 - 0xFEDF	Control and configuration registers for 12 MHz							
	clock							

	VS1005g Peripheral Addresses
Address	Device
PLL clocked peripl	nerals
0xFC00 - 0xFC1F	Interrupt controller
0xFC20 - 0xFC3F	DSP interface registers
0xFC40 - 0xFC4F	SPI 0
0xFC50 - 0xFC5F	SPI 1
0xFC60 - 0xFC65	10base-t ethernet controller
0xFC66 - 0xFC6C	DSP interface for peripheral data buffer
0xFC70 - 0xFC76	Reed-Solomon codes
0xFC77 - 0xFC7A	Nand flash interface
0xFC7B - 0xFC7F	SD card interface
0xFC80 - 0xFC9F	Full Speed USB
0xFCA0 - 0xFCBF	16-bit GPIO port 0
0xFCC0 - 0xFCDF	16-bit GPIO port 1
0xFCE0 - 0xFCFF	14-bit GPIO port 2
0xFD00 - 0xFD1F	S/PDIF
XTALI clocked peri	pherals
0xFE00 - 0xFE1F	UART
0xFE20 - 0xFE3F	Watchdog
0xFE40 - 0xFE5F	FM and A/D interface
0xFE60 - 0xFE7F	I2S
0xFE80 - 0xFE9F	Timers
0xFEA0 - 0xFEBF	RTC interface
0xFEC0 - 0xFEDF	Control and configuration registers for 12 MHz clock

11.4 Interrupt Controller

VS1005g has 28 maskable interrupt vectors and 33 interrupt sources. The interrupt controller is external to DSP and it prioritizes the requests before forwarding them to the DSP.

Interrupt controller has three levels of priority for simultaneous requests and a global disable/enable for all of the sources. Interrupt sources are divided so that interrupt sources 15-0 are mapped to low registers and 27-16 to high registers.

For an interrupt handler written in C, an assembly language stub that re-enables interrupts before RETI, should be written. The assembly language stub should call the C language handler routine.

	VS1005g interrupt vectors (continued)									
Source	Vector	Address	Device	Read also						
INT_SAR	27	0x3b	10-bit ADC (SAR)	Chapter 11.20						
INT_PWM	26	0x3a	Pulse width modulator	Chapter 11.21						
INT_REGU	25	0x39	Power button	Chapter 11.6.1						
INT_STX	23	0x37	S/PDIF transmitter	Chapter 11.14.3						
INT_SRX	22	0x36	S/PDIF receiver	Chapter 11.14.1						
INT_RDS	21	0x35	FM RDS	Chapter 11.9.3						
INT_RTC	20	0x34	RTC time alarm	Chapter 11.19						
INT_DAOSET	19	0x33	DAC offset	Chapter 11.7.5						
INT_SRC	18	0x32	DAC sample rate converter	Chapter 11.7.6						
INT_FM	17	0x31	FM interrupt (192 kHz)	Chapter 11.9						
INT_TIMER2	16	0x30	Timer 2	Chapter 11.18						

		VS1005g i	interrupt vectors (continued)	
Source	Vector	Address	Device	Read also
INT_TIMER1	15	0x2f	Timer 1	Chapter 11.18
INT_TIMER0	14	0x2e	Timer 0	Chapter 11.18
INT_UART_RX	13	0x2d	UART receive	Chapter 11.15
INT_UART_TX	12	0x2c	UART transmit	Chapter 11.15
INT_I2S	11	0x2b	I2S transmitter/receiver	Chapter 11.17
INT_MAC2	10	0x2a	A/D 3 (mono AD)	Chapter 11.8
INT_GPIO2	9	0x29	Gpio port 2	Chapter 11.13
INT_GPIO1	8	0x28	Gpio port 1	Chapter 11.13
INT_GPIO0	7	0x27	Gpio port 0	Chapter 11.13
INT_MAC0	6	0x26	A/D 1/2 (stereo AD)	Chapter 11.8
INT_MAC1	5	0x25	FM decimation-by-6 filter	Chapter 11.8
INT_SPI1	4	0x24	SPI 1	Chapter 11.10
INT_SPI0	3	0x23	SPI 0	Chapter 11.10
INT_XPERIP	2	0x22	Common Data Interfaces	Chapter 11.11
			(SPI, SD, Reed-Solomon, Ethernet,	
			Nand flash)	
INT_USB	1	0x21	Full Speed USB	Chapter 11.12
INT_DAC	0	0x20	DAC	Chapter 11.7.1

11.4.1 Interrupt Controller Registers

The interrupt controller has three type of registers:

- Enable registers, which contain enable/disable bits for each interrupt source. Bit pairs configure the interrupt priority and disable.
- Origin registers, which contain the source flags for each interrupt. A request from an interrupt source sets the corresponding bit. A bit is automatically reset when a request for the source is generated.
- Enable counter register, which contains the value of the General Interrupt Enable counter, and two registers for increasing and decreasing the value.

			Interrupt Controll	er Registers		
Address	Туре	Reset	Abbrev	Description		
0xFC02	r/w	0	INT_ENABLE0_HP	Interrupt enable high priority for ints. 015		
0xFC00	r/w	0	INT_ENABLE0_LP	Interrupt enable low priority for ints 015		
0xFC03	r/w	0	INT_ENABLE1_HP	Interrupt enable high priority for ints 1627		
0xFC01	r/w	0	INT_ENABLE1_LP	Interrupt enable low priority for ints 1627		
0xFC04	r/w	0	INT_ORIGIN0	Interrupt origin for interrupts 015		
0xFC05	r/w	0	INT_ORIGIN1	Interrupt origin for interrupts 1627		
0xFC06	r	0	INT_VECTOR[4:0]	Interrupt vector		
0xFC07	r/w	0	INT_ENCOUNT[2:0]	Interrupt enable counter		
0xFC08	w	0	INT_GLOB_DIS[-]	Interrupt global disable		
0xFC09	w	0	INT_GLOB_ENA[-]	Interrupt global enable		

11.4.2 Interrupt Enable INT_ENABLE[0/1]_[H/L]P

Interrupt enable registers selectively masks interrupt sources. Enable registers 0 contain sources 0..15 and enable registers 1 contain sources 16..27. Each source has two enable bits: one in the enable high priority (_HP) and one in the enable low priority (_LP) register. If both bits are zero, the corresponding interrupt source is not enabled, otherwise the bits select the interrupt priority.

_HP	_LP	Priority			
0	0	Source disabled			
0	1	Priority 1 (low)			
1	0	Priority 2 (medium)			
1	1	Priority 3 (high)			

Priorities only matter when the interrupt controller decides which interrupt to generate for the core next. This happens whenever two interrupt sources request interrupts at the same time, or when interrupts become enabled after an interrupt handler routine or a part of code where the interrupts have been disabled.

11.4.3 Interrupt Origin INT_ORIGIN[0/1]

If an interrupt source requests an interrupt, the corresponding bit in the interrupt origin register (INT_ORIGIN0 or INT_ORIGIN1) will be set to '1'. If an interrupt source is enabled (using INT_ENABLE[0/1]_[H/L]P registers), the interrupt controller generates an interrupt request signal for VSDSP with the corresponding vector value. The bit in the origin registers is reset automatically after the interrupt is requested.

If the source is not enabled, the processor can read the origin register state and perform any necessary actions without using interrupt generation, i.e. polling of the interrupt sources is also possible. The bits in the interrupt origin registers can be cleared by writing '1' to them.

A read from the interrupt origin register returns the register state.

A write to the interrupt origin register clears the bits in the origin register that are set by the write. In other words, writing *b* to $INT_ORIGINx$ performs the logical operation $INT_ORIGINx = INT_ORIGINx$ and (not b).

Example: If value for INT_ORIGIN0 is 0x00FF, writing 0xF00F to it will end up with INT_ORIGIN0 = 0x00FF and (not 0xF00F) = 0x00FF and 0x0FF0 = 0x00F0.

11.4.4 Interrupt Vector INT_VECTOR

The last generated vector value (0..27) can be read from the vector register.

11.4.5 Interrupt Enable Counter INT_ENCOUNT

The global interrupt enable/disable register INT_ENCOUNT is used to control whether an interrupt request is sent to the processor or not. If the 3-bit counter is zero, interrupt signal generation is enabled. While it is non-zero, interrupt requests are not forwarded to VSDSP. The counter is increased by one whenever the interrupt controller generates an interrupt request for VSDSP, or when the register INT_GLOB_DIS is written to. It is decressed by one if it is non-zero and the register INT_GLOB_ENA is written to.

When read, the enable counter register returns the counter value.

Don't write directly to INT_ENCOUNT. Manipulate its value by writing to INT_GLOB_DIS and INT_GLOB_ENA instead.

11.4.6 Interrupt Global Disable INT_GLOB_DIS

A write (of any value) to the global disable register increases the global interrupt enable/disable counter INT_ENCOUNT by one, thus disabling interrupts.

Note: If an interrupt is generated during the same clock cycle as a write to the global disable register, the interrupt enable counter is increased by two.

11.4.7 Interrupt Global Enable INT_GLOB_ENA

If the global interrupt enable/disable counter INT_ENCOUNT is not zero, a write (of any value) to INT_GLOB_ENA decreases the counter by one.

The user must write to this register once at the end of interrupt handlers to re-enable interrupts.

11.5 DSP Clock Domain Registers

11.5.1 General Purpose Software Registers

SW_REG0, SW_REG1, SW_REG2 and SW_REG3 are software registers for user purposes. They are zeroed in reset and do not control any logic.

	Software Registers									
Address Type Reset Abbrev Description				Description						
0xFC20	r/w	0	SW_REG0	16-bit general purpose sw register						
0xFC21	r/w	0	SW_REG1	16-bit general purpose sw register						
0xFC22	r/w	0	SW_REG2	16-bit general purpose sw register						
0xFC23	r/w	0	SW_REG3	16-bit general purpose sw register						

11.5.2 Peripheral I/O Control

VS1005g has three general purpose I/O ports. Ports 0 and 1 are 16-bits and port 2 is 14 bits. GPIO pins can be used either in GP mode or they can have also a special peripheral function. GPIO or peripheral function can be defined for each pin separately.

	GPIO Mode Registers										
Address	Туре	Reset	Abbrev	Description							
0xFC30	r/w	0	GPIO0_MODE	Mode control for gpio port 0							
0xFC31	r/w	0	GPIO1_MODE	Mode control for gpio port 1							
0xFC32	r/w	0	GPIO2_MODE	Mode control for gpio port 2							

GPIO0_MODE, GPIO1_MODE and GPIO2_MODE registers are used to select current GPIO mode. By default all VS1005g pins are at GPIO mode and all GPIOx_MODE register are reset. If a peripheral mode is required the pin's GPIOx_MODE bit must be set ('1').

11.5.3 PLL Clock Control

VS1005g has two clock domains, the PLL clock domain and 12 MHz clock domain. The PLL is controlled with one register.

Clock Control Register							
Address	ss Type Reset Abbrev Description						
0xFC33	r/w	0	CLK_CF	PLL clock control register			

CLK_CF Bits					
Name	Bits	type	Description		
CLK_CF_EXTOFF	15	r/w	S/PDIF peripheral clock gate control		
CLK_CF_NFOFF	14	r/w	NF, SD and R-S peripherals clock gate control		
CLK_CF_USBOFF	13	r/w	USB peripheral clock gate control		
CLK_CF_RTCSLP	12	r/w	RTC power down mode enable		
CLK_CF_LCKST	11	r/w	PLL vco lock status		
CLK_CF_GDIV256	10	r/w	Global Clock 256-divider enable		
CLK_CF_GDIV2	9	r/w	Global clock 2-divider enable		
CLK_CF_LCKCHK	8	r/w	PLL vco lock check initialization		
CLK_CF_VCOOUT	7	r/w	Enable PLL clock output pad driver		
CLK_CF_USBCLK	6	r/w	Full Speed USB clock mode control		
CLK_CF_FORCEPLL	5	r/w	PLL clock switch control		
CLK_CF_DIVI	4	r/w	PLL input clock divider control		
CLK_CF_MULT	3:0	r/w	PLL clock multiplier factor		

CLK_CF_MULT determines the clock multiplier for input clock. Multiplier is value+1 i.e. value 1 means clock is multiplied by 2. Value 0 disables the PLL.

CLK_CF_DIVI controls the input divider of PLL's vco. If CLK_CF_DIVI is set the vco input clock is divided by two. If CLK_CF_DIVI is reset the vco input clock is the XTALI oscillator clock. When divider is used the CLK_CF_MULT can be programmed with values 1-15.

CLK_CF_FORCEPLL register controls the output clock switch. When set the output clock is PLL's vco clock. When reset the output clock is XTALI oscillator clock. It should be noted that the vco must be locked when CLK_CF_FORCEPLL is modified.

CLK_CF_USBCLK selects Full Speed USB clock (UTM) instead of PLL vco clock. This clock must be selected before CLK_CF_FORCEPLL is modified. CLK_CF_MULT must have some value other than 0 when this clock mode is used. Also the Full Speed USB must be configured properly to output 60 MHz clock for core.

CLK_CF_VCOOUT enables the vco clock's output pad driver to pin GPIO2_4. The pad must be in peripheral mode in order to output clock. The output driver has glitch removal.

CLK_CF_LCKCHK and CLK_CF_LCKST are used to poll vco lock status. When CLK_CF_LCKCHK is first set and reset the lock status can be read from CLK_CF_LCKST. If CLK_CF_LCKST remains set the PLL vco is locked.

CLK_CF_GDIV256 and CLK_CF_GDIV2 are the global clock dividers. These divider divide also the 12 MHz clock domain clock. PLL must be disabled when these dividers are used.

CLK_CF_RTCSLP enables RTC clocking mode.

CLK_CF_EXTOFF, CLK_CF_NFOFF and CLK_CF_USBOFF control peripheral clock gates. CLK_CF_NFOFF controls Nand flash, SD card, ethernet, Reed-Solomon codecs and peripheral data buffer clocks. CLK_CF_EXTOFF controls S/PDIF peripheral clock. CLK_CF_USBOFF controls USB peripheral clock.

11.6 XTALI Clock Domain Registers

Peripheral control registers control the logic that is clocked with the XTALI clock (12.288 MHz).

11.6.1 Analog Control Registers

Analog Control Registers						
Reg	Туре	Reset	Abbrev	Description		
0xFECC	r/w	0	ANA_CF0	Analog Control register 0		
0xFECB	r/w	0	ANA_CF1	Analog Control register 1		
0xFED2	r/w	0	ANA_CF2	Analog Control register 2		
0xFED3	r/w	0	ANA_CF3	Analog Control register 3		

ANA_CF0 Bits				
Name Bits		Description		
	15:11	Reserved, use '00000'		
ANA_CF0_M1LIN	10	Line input mode select for ADC 1		
ANA_CF0_M2LIN	9	Line input mode select for ADC 2		
	8:6	Reserved, use '000'		
ANA_CF0_M2MIC	5	Mic input mode select for ADC 2		
ANA_CF0_LCKST	4	2 GHz vco lock status		
ANA_CF0_LCKCHK	3	2 GHz vco lock check init		
ANA_CF0_M1MIC	2	Mic input mode select for ADC 1		
ANA_CF0_M2FM	1	FM input mode select for ADC 2		
ANA_CF0_M1FM	0	FM input mode select for ADC 1		

ANA_CF0_LCKCHK and ANA_CF0_LCKST are used to poll 2 GHz vco lock status. When ANA_CF0_LCKCHK is first set and reset the lock status can be read from ANA_CF0_LCKST. If ANA_CF0_LCKST remains set the 2 GHz VCO is locked.

For details on how to program register bits ANA_CF0_M[1/2]LIN, ANA_CF0_M[1/2]MIC, and ANA_CF0_M[1/2]FM, see Chapter 11.8.1 on Page 64.

ANA_CF1 Bits				
Name	Name Bits Description			
	15	Reserved, use '0'		
ANA_CF1_VHMON	14	Regulator input voltage monitor (VHIGH)		
ANA_CF1_PWRBTN	13	Power button pin state ¹		
ANA_CF1_BTNDIS	12	Power button reset disable		
	11	Reserved, use '1'		
ANA_CF1_DBG	10	Debug mode pin state		
ANA_CF1_XTDIV	9	Input clock divider for 24.576 MHz XTALI oscillator		
ANA_CF1_SAR_ENA	8	SAR power and enable		
	7	Reserved, Use '0'		
ANA_CF1_DA_ENA	6	DAC power and enable		
	5:4	Reserved, use '00'		
ANA_CF1_DRV_ENA	3	DAC driver power enable		
	2	Reserved, use '0'		
ANA_CF1_DAGAIN	1:0	DAC gain control ²		

¹ Once PWRBTN has been depressed, the ANA_CF1 read bit ANA_CF1_PWRBTN will stay high until REGU_CF_CLK has been turned high/low. An example for how to read the PWRBTN pin follows:

PERIP(REGU_CF) |= REGU_CF_REGCK; PERIP(REGU_CF) &= ~REGU_CF_REGCK; powerButtonPushed = (PERIP(ANA_CF1) & ANA_CF1_PWRBTN);

² DAC gain control ANA_CF1_DAGAIN values work as follows:

ANA_CF1_DAGAIN Values				
Name	Value	Gain	Description	
ANA_CF1_DAGAIN_M6DB	3	-6 dB		
	2	-2 dB	Causes distortion, do not use	
ANA_CF1_DAGAIN_M12DB	1	-12 dB		
ANA_CF1_DAGAIN_0DB	0	0 dB		

ANA_CF1_XTDIV is the input clock prescaler control register. When register is set the input clock is divided by 2. ANA_CF1_SAR_ENA, ANA_CF1_DA_ENA and ANA_CF1_DRV_ENA are analog module's enable signals. When register is set the module is enabled.

ANA_CF2 Bits					
Bits	Description				
15:14	Reserved, use '0'				
13	Hardware debug test enable, read only				
12	Ground buffer short circuit monitor				
11	Ground buffer driver short circuit protection disable				
10	Full Speed USB UTM enable				
9	Low Noise Amplifier enable				
8	2 GHz VCO enable				
7	Microphone amplifier 1 enable				
6	Microphone amplifier 2 enable				
5	Reserved, use '0'				
4	Analog reference voltage $V_{ref} = 1.2 V (0)$ or 1.6 V (1)				
3	Analog reference power enable				
2	ADC 3 power enable				
1	ADC 2 power enable				
ANA_CF2_M1_ENA 0 ADC 1 power enable					
	15:14 13 12 11 10 9 8 8 7 6 5 5 4 3 2 2 1				

ANA_CF2 register controls several analog module power enables. Each module is enabled when the power enable register bit is set.

ANA_CF3 Bits					
Name	Bits	Description			
ANA_CF3_480_ENA	15	480 MHz clock enable			
ANA_CF3_UTMBIAS	14	USB pad bias enable			
ANA_CF3_FMDIV[1:0]	13:12	FM divider selection 16, 20 or 24			
ANA_CF3_DIV[1:0]	11:10	VCO divider select register			
ANA_CF3_GAIN2[2:0]	9:7	ADC 2 gain register			
ANA_CF3_GAIN1[2:0]	6:4	ADC 1 gain register			
ANA_CF3_2GCNTR[3:0]	3:0	VCO center frequency register			

ANA_CF3_FMDIV is the VCO divider selection register for FM receiver. When the register is set the VCO clock is divided by 20 (FM mode). When the register is reset the divider value is 16 (HS USB mode). ANA_CF3_FMDIV2 register selects the divider 24. In this divider mode the ANA_CF3_FMDIV should be set. The VCO frequency is therefore FM tuning frequency multiplied by 16, 20 or 24.

	FM Divider Bits						
F	FMDIV[1] FMDIV[0] Divider Description						
	1	1	24	FM frequency is VCO frequency divided by 24			
	1	0	20	FM frequency is VCO frequency divided by 20			
	0	1	24	Don't Use (reserved)			
	0	0	16	FM frequency is VCO frequency divided by 16			

ANA_CF3_2GCNTR register is used to match VCO's center frequency to programmed value (CCF). ANA_CF3_DIV[1:0] controls the VCO's dividers. These dividers are used to set VCO's output frequency range.

ANA_CF3_480ENA is the 480 MHz clock driver enable for UTM. When set the clock driver is enabled.

ANA_CF3_GAIN1 and ANA_CF3_GAIN2 set the ADC 1 and 2 gains. ADC gain can be adjusted to four values.

ADC Gain				
Register value	Gain			
001	20 dB (max)			
010	17 dB			
100	14 dB			
000	11 dB (min), default after reset			

11.6.2 Regulator and Peripheral Clock Control Registers

VS1005g has four internal regulators, one regulator for each power domain. The voltage can be adjusted in about 50mV step size. To save power some of the peripheral clocks can be switched off.

Regulator and Clock Control							
Reg	leg Type Reset Abbrev Description						
0xFECE	r/w	0	REGU_CF	Regulator control register			
0xFED0	r/w	0	REGU_VOLT	Regulator voltage register			

REGU_VOLT Bits			
Name Bits Description			
REGU_VOLT_AVDD[4:0]	14:10	Analog voltage configuration 2.7V-3.6V	
REGU_VOLT_IOVDD[4:0]	9:5	IO voltage configuration, 1.8V-3.6V	
REGU_VOLT_CVDD[4:0]	4:0	Core voltage configuration, 1.65V-1.9V	

REGU_CF Bits			
Name	Bits	Description	
REGU_CF_SNFVOLT ¹	11:7	Serial Flash voltage configuration	
REGU_CF_SNFOFF	6	Serial Flash voltage regulator shutdown	
REGU_CF_ADOFF	5	AD filter clock gate control	
REGU_CF_FMOFF	4	FM demodulator clock gate control	
REGU_CF_REGCK	3	Regulator latch enable	
REGU_CF_AOFF	2	Analog voltage regulator shutdown	
REGU_CF_IOOFF	1	IO voltage regulator shutdown	
REGU_CF_COFF	0	Core voltage regulator shut down	

¹ User should not modify this register if embedded serial flash is used.

REGU_CF_ADOFF and REGU_CF_FMOFF control the AD and FM peripheral clocks. When these registers are set the clocks are cut off.

REGU_CF_REGCK is used to latch in the regulator voltage and shutdown bits. Typical values for voltages are calculated from equations:

- $AVDD = 2.480V + (40mV * REGU_VOLT_AVDD)$
- $IOVDD = 1.800V + (60mV * REGU_VOLT_IOAVDD)$
- $CVDD = 1.325V + (25mV * REGU_VOLT_CVDD)$

11.7 Audio Playback Interfaces

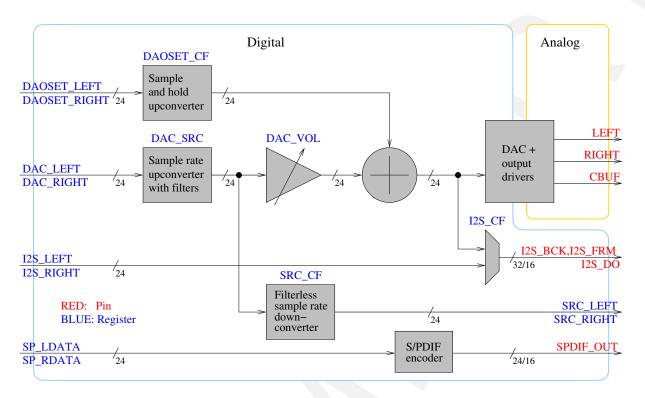


Figure 17: VS1005g playback (DA) audio paths

The VS1005g playback audio paths are shown in Figure 17.

The nominal high-quality audio path egins from registers DAC_LEFT and DAC_RIGHT, then goes through the Sample Rate Upconverter with Filters and the Volume Control to the DAC, and finally to the LEFT and RIGHT output pins. CBUF is used as a ground reference.

For lower-quality sound effects, secondary audio with a potentially different sample rate can be independently added to the signal through the DAOSET_LEFT and DAOSET_RIGHT registers. The upconverter for this path contains only sample-and-hold filtering, so using low sample rates may result in audible aliasing.

The combined main and secondary audio path signal can optionally also be copied to the I2S output. Alternatively the I2S output can be controlled directly using registers I2S_LEFT and I2S_RIGHT.

The main audio path may be intercepted and downsampled with the Filterless Sample Rate Downconverter. Because the downconverter is filterless, the user has to take care to select sample rates in such a way that doesn't introduce audible aliasing. Aliasing does not occur if the sample rate for the output (SRC_LEFT and SRC_RIGHT) is never lower than the sample rate for the input (DAC_LEFT and DAC_RIGHT), but in special cases even lower Downconverter sample rates may result in audio that is good enough for the application.

Not directly connected to any other part of the playback audio path is the S/PDIF signal path. This signal path does not interact with the other ones, and it is only included in the figure to show all available playback audio paths.

11.7.1 Primary Audio Path 24-bit Sample Rate Upconverter with Filters: DAC Registers

VS1005g has a 24-bit DAC with a programmable sample rate. Sample rates up to 96 kHz are supported.

	DAC Interface Registers					
Address	Туре	Reset	Abbrev	Description		
0xFC34	r/w	0	DAC_SRCL	DAC sample rate, bits 15-0		
0xFC35	r/w	0	DAC_SRCH[3:0]	DAC sample rate, bits 19-16		
0xFC36	r/w	0	DAC_LEFT_LSB[15:8]	DAC left sample, bits 7-0		
0xFC37	r/w	0	DAC_LEFT	DAC left sample, bits 23-8		
0xFC38	r/w	0	DAC_RIGHT_LSB[15:8]	DAC right sample, bits 7-0		
0xFC39	r/w	0	DAC_RIGHT	DAC right sample, bits 23-8		

The DAC interpolator frequency is defined with registers DAC_SRCH and DAC_SRCL which combined form the 20-bit register DAC_SRC. The sample rate is derived from the rollover frequency of a 20-bit interpolator accumulator. Its accumulation rate is specified by DAC_SRC.

If DAC_MTEST_96K = 0, output sample rate f_s can be calculated from the equation

 $f_s = (XTALI/2^{27}) \times DAC_SRC$

where DAC_SRC can have values from 1 to 1048575 (0xFFFFF).

If DAC_MTEST_96K = 1, output sample rate f_s can be calculated from the equation

 $f_s = (XTALI/2^{26}) \times DAC_SRC$

where DAC_SRC can have values from 1 to 532480 (0x82000).

If $DAC_SRC = 0$, the DAC is placed in idle mode. In idle mode all logic is halted. Also the analog clock is halted.

Note that the DAC clock is not controlled by the PLL.

The exact sample rate is dependent on XTALI, so for example a sample rate of exactly 48 kHz requires that XTALI = 12.288 MHz.

24-bit samples are written to registers DAC_LEFT, DAC_LEFT_LSB, DAC_RIGHT and DAC_RIGHT_LSB after each DAC interrupt.

11.7.2 Test Modes and DAC/ADC Control Registers

DAC/ADC test modes and clocking				
Address Type Reset Abbrev Description				
0xFECF r/w 0 DAC_MTEST DAC memory test and AD/DA control				

DAC_MTEST Bits			
Register Bit Description			
DAC_MTEST_3MUAD	12	Mems mic 6M/3M ('1') clock mode (uad, uda)	
DAC_MTEST_96K	11	DAC 96 kHz mode	
DAC_MTEST_INTERNAL	10:0	For VLSI's testing. Do not change	

DAC_MODE_3MUAD bit selects between 3 MHz and 6 MHz clocks for external circuitry. This clock can be used with external DAC, ADC and MEMS MIC modules. The clock output pins are either GPIO2_4 or GPIO1_15.

DAC MODE 96K bit enables DAC sample rates of exactly and slightly over 96 kHz when running at XTALI = 12.288 MHz. In this mode the SNR is somewhat degraded. When 96 kHz mode is activated or deactivated, the DAC must be disabled i.e. the DAC_SRCH = DAC_SRCL = 0. Note that DAC_MODE_96K affects the way the sample rate register DAC_SRC is interpreted. See documentation for DAC_SRCH and DAC_SRCL for details.

11.7.3 Configuring Analog DAC Modules

Example values of analog configuration registers with 1.6 V reference are given in next table.

Analog Control Register example for DAC Operation					
Address Register Value Description					
0xFECB	0xFECB ANA_CF1 0x0048 DAC and output driver power down		DAC and output driver power down		
0xFED2	ANA_CF2	0x0018	Reference voltage select and reference power down		

11.7.4 Primary Audio Path Volume Control

In VS1005g the DAC's volume level can be adjusted in -0.5dB steps.

DAC Volume Registers				
Reg	Reg Type Reset Abbrev Description			
0xFEC0	r/w	0	DAC_VOL	DAC volume control register

DAC_VOL Bits			
Name	Bits	Description	
DAC_VOL_LADD[3:0]	15:12	Left channel +0.5dB steps	
DAC_VOL_LSFT[3:0]	11:8	Left channel -6dB steps	
DAC_VOL_RADD[3:0]	7:4	Right channel +0.5dB steps	
DAC_VOL_RSFT[3:0]	3:0	Right channel -6dB steps	

DAC_VOL_LSFT and DAC_VOL_RSFT are the coarse volume control registers. They suppress channel volume by -6dB steps.

DAC_VOL_LADD and DAC_VOL_RADD are the fine volume control registers. They add channel volume level by +0.5dB steps. Allowed values are from 0 to 11, i.e. maximum is +5.5dB. Values between 12-15 equal to 0dB.

11.7.5 Secondary Audio Path: DAOSET Registers

In VS1005g a secondary audio source can be mixed to the main audio path output. This is done with DAC offset registers. The sample rate is programmable.

DAC Offset Registers					
Reg	Туре	Reset	Abbrev	Description	
0xFEC1	r/w	0	DAOSET_CF	DAC offset configuration register	
0xFEC2	r/w	0	DAOSET_LEFT_LSB[15:12]	DAC left offset bits [3:0]	
0xFEC3	r/w	0	DAOSET_LEFT	DAC left offset bits [19:4]	
0xFEC4	r/w	0	DAOSET_RIGHT_LSB[15:12]	DAC right offset bits [3:0]	
0xFEC5	r/w	0	DAOSET_RIGHT	DAC right offset bits [19:4]	

DAOSET_CF Bits				
Name Bits Description				
DAOSET_CF_URUN	14	Data register underrun flag		
DAOSET_CF_FULL	13	Data register full flag		
DAOSET_CF_ENA	12	Enable for DAC offset		
DAOSET_CF_FS	11:0	DAC offset sample rate		

DAOSET_CF_URUN is an underrun flag register. The register is set if data register was read when the full flag was not set.

DAOSET_CF_FULL is a data status register. Flag is set when data is written to DAOSET_LEFT and DAOSET_RIGHT registers and reset when DAC reads the register.

DAOSET_CF_ENA enables DAC offset module.

DAOSET_CF_FS is used to set DAC offset sample rate. This register defines the interval in clock cycles where the samples are added to DAC output. When new samples are read from data registers also an interrupt request is generated.

Sample rate can be calculated from equation:

 $fs = F_{clk}/(dacoffset_cf_fs + 1))$ where

dacoffset_cf_fs can have values from 0 to 4095 (0xFFF) and F_{clk} is the XTALI clock frequency. E.g. value 0xFFF gives sample rate of 12.288 MHz / (0xFFF+1) = 3.0 kHz.

DAC and DAC offset mixing logic uses saturation to limit samples to 20-bit signed values. The mixed values should not exceed 75% of the full scale values or the signal to noise ratio may be degraded.

11.7.6 Filterless Sample Rate Converter (SRC) Registers

VS1005g has a programmable sample rate converter which can be used to convert DAC's input sample rate to an other sample rate which is higher than the original sample rate.

SRC Characteristics					
Item	Value	Description			
XTALI Clock	11.0 MHz - 13.0 MHz	Clock frequency			
DAC bit width	24	Input data width			
SRC bit width	24	Output data width			
DAC sample rate ¹	0 Hz - 96 kHz	Input sample rate			
Output sample rate ¹	$0.97 imes FS_{in}$ - 192 kHz	Output sample rate			
Filter delay ²	19 input samples				
Gain	0.78				

¹ Assuming 12.288 MHz XTALI clock.

² In start-up the SRC output is valid after 19 DAC interrupts.

	SRC Registers					
Reg	Туре	Reset	Abbrev	Description		
0xFEC6	r/w	0	SRC_CF	SRC sampler configuration register		
0xFEC7	r/w	0	SRC_LEFT_LSB[15:12]	SRC left sample bits [7:0]		
0xFEC8	r/w	0	SRC_LEFT	SRC left sample bits [23:8]		
0xFEC9	r/w	0	SRC_RIGHT_LSB[15:12]	SRC right sample bits [7:0]		
0xFECA	r/w	0	SRC_RIGHT	SRC right sample bits [23:8]		

SRC_CF Bits			
Name Bits Description		Description	
SRC_CF_ORUN	15	SRC overrun flag	
SRC_CF_RFULL	14	Right data register full flag	
SRC_CF_LFULL	13	Left data register full flag	
SRC_CF_ENA	12	Enable for sample rate convertter	
SRC_CF_FS	11:0	SRC sample rate	

SRC_CF_ORUN is set if data register was full when data registers were modified.

SRC_CF_RFULL and SRC_CF_LFULL status registers for new samples. Flags are set as SRC_LEFT and SRC_RIGHT are modified and reset as they are read.

SRC_CF_ENA enables sample rate converter when set.

SRC_CF_FS is used to set src sample rate. This register defines the interval in clock cycles when the samples are generated. When new samples are stored to data registers also an interrupt request is generated.

Output sample rate can be calculated from equation:

 $fs = XTALI/(2 * (src_cf_fs + 1))$

where src_cf_fs can be between 0 and 4095 (0xFFF).

Example: With src_cf_fs = 0x7FF, the sample rate fs = $12.288 \text{ MHz} / (2^*(0x7FF+1)) = 3000 \text{ Hz}$.

11.8 24-bit Analog to Digital Converters (ADC)

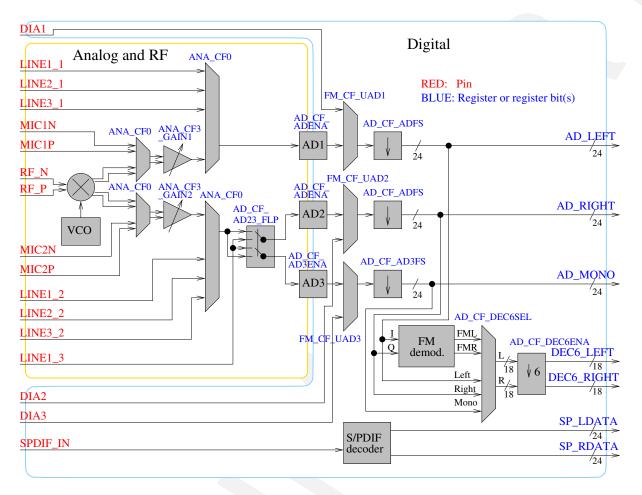


Figure 18: VS1005g recording (AD and FM) signal paths

VS1005g has three 24-bit AD input channels and an FM receiver. The signal paths for them are shown in Figure 18.

ADs 1 and 2 can be configured for mic or line input mode (stereo AD). AD 3 can be used as a line input (mono AD). However, if AD_CF_AD23_FLP is set, then analog channels 2 and 3 are crossed before the analog-to-digital converters. This makes it possible to use AD3 as a mono microphone input (e.g. pins MIC2N and MIC2P), potentially at a different sample rate from a stereo line input to AD1 and AD2 (e.g. to pins LINE1_1 and LINE1_3).

When the FM receiver is used only AD 3 is available for other uses because the FM demodulator reserves the signal paths of ADs 1 and 2.

All of the logic is clocked directly with the XTALI (11-13 MHz). FM and AD digital peripheral clocks can be switched off to save power. In order to use FM or/and AD channels the master clock enable registers REGU_CF_ADOFF and REGU_CF_FMOFF must be reset. Analog and RF logic clocking is automatically switched on when blocks are enabled.

The front end of the ADs (analog section, i.e. ADC) always operates at XTALI / 2. The digital logic has a programmable sample rate. Sample rates are between 24 kHz and 192 kHz. It should be noted that the exact sample rates are XTALI-dependent and here it is assumed that XTALI = 12.288 MHz.

Note that the S/PDIF interface does not interact with any other audio paths. It is only included to show all available audio input paths, digital or analog.

AD filter's control and data registers are listed in following table.

	A/D Control and Data Registers						
Reg	Туре	Reset	Abbrev	Description			
0xFE40	r/w	0	FM_CF	FM demodulator and AD filter configura-			
				tion register			
0xFE41	r/w	0	AD_CF	AD filter configuration register			
0xFE46	r	0	AD_LEFT_LSB[15:8]	AD1 filter (left) channel bits [7:0]			
0xFE47	r	0	AD_LEFT	AD1 filter (left) channel bits [23:8]			
0xFE48	r	0	AD_RIGHT_LSB[15:8]	AD2 filter (right) channel bits [7:0]			
0xFE49	r	0	AD_RIGHT	AD2 filter (right) channel bits [23:8]			
0xFE4A	r	0	AD_MONO_LSB[15:8]	AD3 filter (mono) channel bits [7:0]			
0xFE4B	r	0	AD_MONO	AD3 filter (mono) channel bits [23:8]			
0xFE4E	r	0	DEC6_LEFT_LSB[15:14]	FM filter left channel bits [1:0]			
0xFE4F	r	0	DEC6_LEFT	FM filter left channel bits [17:2]			
0xFE50	r	0	DEC6_RIGHT_LSB[15:14]	FM filter right channel bits [1:0]			
0xFE51	r	0	DEC6_RIGHT	FM filter right channel bits [17:2]			

11.8.1 Configuring Signal Paths for ADC1, ADC2 and ADC3

Analog signal paths for ADCs are configured using registers ANA_CF0 (see Chapter 11.6.1 on Page 52) and AD_CF (see Chapter 11.8.2, Page 66).

	ADC1 Signal Path Configuration						
Note: A	Note: Always set ANA_CF2 bits ANA_CF2_REF_ENA and ANA_CF2_M1_ENA.						
4	ANA_CFO)	Input	Input	Set/Check Also		
M1FM	M1LIN	M1MIC	Pin(s)	Pin Name(s)			
0	1	0	73	LINE1_1			
1	1	0	68	LINE2_1			
0	0	0	71	LINE3_1			
1	0	1	72,73	MIC1P	ANA_CF2_AMP1_ENA		
				MIC1N	ANA_CF3_GAIN1[2:0]		
1	0	0	75,76	RF_N & RF_P	ANA_CF2_AMP1_ENA		
				(I signal)	ANA_CF2_LNA_ENA		
					ANA_CF2_2G_ENA		
					ANA_CF3_FMDIV[1:0]		
					ANA_CF3_DIV[1:0]		
					ANA_CF3_GAIN1[2:0]		
					ANA_CF3_2GCNTR[3:0]		
					AD_CF_DEC6ENA		
					AD_CF_DEC6SEL[1:0]		

	ADC2 Signal Path Configuration							
N	Note: Always set ANA_CF2 bits ANA_CF2_REF_ENA and ANA_CF2_M2_ENA.							
4	ANA_CFO	<u> </u>	AD_CF_	Input	Input	Set/Check Also		
M2FM	M2LIN	M2MIC	AD23_FLP	Pin(s)	Pin Name(s)			
0	1	0	0	72	LINE1_2			
1	1	0	0	67	LINE2_2			
0	0	0	0	70	LINE3_2			
1	0	1	0	70,71	MIC2P &	ANA_CF2_AMP2_ENA		
					MIC2N	ANA_CF3_GAIN2[2:0]		
1	0	0	0	75,76	RF_N & RF_P	ANA_CF2_AMP2_ENA		
					(Q signal)	ANA_CF2_LNA_ENA		
						ANA_CF2_2G_ENA		
						ANA_CF3_FMDIV[1:0]		
						ANA_CF3_DIV[1:0]		
						ANA_CF3_GAIN2[2:0]		
						ANA_CF3_2GCNTR[3:0]		
						AD_CF_DEC6ENA		
						AD_CF_DEC6SEL[1:0]		
X	Х	Х	1	69	LINE1_3			

	ADC3 Signal Path Configuration						
N	Note: Always set ANA_CF2 bits ANA_CF2_REF_ENA and ANA_CF2_M2_ENA.						
4	ANA_CFO)_	AD_CF_	Input	Input	Set/Check Also	
M2FM	M2LIN	M2MIC	AD23_FLP	Pin(s)	Pin Name(s)		
X	Х	Х	0	69	LINE1_3		
0	1	0	1	72	LINE1_2		
0	0	0	1	67	LINE2_2		
1	1	0	1	70	LINE3_2		
1	0	1	1	70,71	MIC2P &	ANA_CF2_AMP2_ENA	
					MIC2N	ANA_CF3_GAIN2[2:0]	
1	0	0	1	75,76	RF_N & RF_P	ANA_CF2_AMP2_ENA	
					(Q signal)	ANA_CF2_LNA_ENA	
					(NOTE: There	ANA_CF2_2G_ENA	
					is no hardware	ANA_CF3_FMDIV[1:0]	
					to decode	ANA_CF3_DIV[1:0]	
					signals from	ANA_CF3_GAIN2[2:0]	
					this path.)	ANA_CF3_2GCNTR[3:0]	

Note: Decoding FM transmissions is only possible if both ADC1 and ADC2 are configured for FM reception (RF pins), and if ANA_CF3_GAIN1 = ANA_CF3_GAIN2.

11.8.2 Digital Filter Operation Modes

The FM_CF register has four bits that have effect on AD functionality. FM_CF_ENABLE activates digital filters. When the register is set the digital filters are operable. This register bit can also be used to synchronize the stereo and mono AD filters when three channels are used with same sample rate (no phase error). To do this, clear FM_CF_ENABLE (if not already cleared), then set it again.

The input to digital filters can also be selected from external ADCs. With FM_CF_UAD1, FM_CF_UAD2 and FM_CF_UAD3 registers the filter's input can be taken from an external source (pins DIA1, DIA2, and DIA3, respectively). In this mode the AD input sample rate must be XTALI/2 or XTALI/4 and the input must be synchronized to VS1005g the XTALI oscillator clock. VS1005g can provide both the XTAL, XTAL/2, and XTAL/4 clocks to external circuits.

FM_CF Bits for Digital Filters (see Chapter 11.9.2 for other bits)				
Name Bits Description				
FM_CF_UAD2	14	External input enable for stereo AD, right channel		
FM_CF_UAD1	13	External input enable for stereo AD, left channel		
FM_CF_UAD3	12	External input enable for mono AD		
FM_CF_ENABLE	6	Software reset for AD and FM demodulator		

The AD configuration register has bits to enable filters and to select sample rates. When the filter is enabled also the interrupt request is generated and forwarded to the interrupt controller. The decimation filter is included to decimate the demodulated FM signals downto 32 kHz sample rate but its input can be selected from other sources also. The filter's input bit width is 18 bits.

AD_CF Bits			
Name	Bits	Description	
AD_CF_AD23_FLP	9	Flip AD2 and AD3 inputs	
AD_CF_DEC6SEL[1:0]	8:7	Input selection for FM filter (decimation-by-6)	
AD_CF_AD3FS[1:0]	6:5	Sample rate selection for AD filter 3 (mono AD)	
AD_CF_ADFS[1:0]	4:3	Sample rate selection for AD filters 1 and 2 (stereo	
		AD)	
AD_CF_DEC6ENA	2	FM decimation-by-6 filter enable	
AD_CF_AD3ENA	1	AD filter 3 enable (mono AD, line input 3)	
AD_CF_ADENA	0	AD filter 1 and 2 enable (stereo AD, line input 1	
		and 2)	

AD_CF_AD23_FLP register flips the input of filters 2 and 3.

The FM decimation filter is used when FM is enabled and it decimates the FM signals to 32 kHz. However, the filter can also be used with other inputs. Register AD_CF_DEC6SEL is used to select the filter input.

Decimation filter input selection					
Name	AD_CF_DEC6SEL	Filter input			
AD_CF_DEC6SEL_MONO	11 or 10	mono AD (left = right)			
AD_CF_DEC6SEL_STEREO	01	stereo ADs			
AD_CF_DEC6SEL_FM	00	FM demodulator			

Sample rate	Sample rate selection for AD filters 1 and 2 (stereo AD)							
Name	AD_CF_ADFS	Decimation factor ¹	Sample rate ²					
AD_CF_ADFS_24K	11	256	24 kHz					
AD_CF_ADFS_48K	10	128	48 kHz					
AD_CF_ADFS_96K	01	64	96 kHz					
AD_CF_ADFS_192K	00	32	192 kHz					

¹ The filter input is XTALI/2, or nominally 6.144 MHz.

 2 Sample rate when XTALI = 12.288 MHz.

Sample rate selection for AD filters 3 (mono AD)						
Name	AD_CF_AD3FS	Decimation factor ¹	Sample rate ²			
AD_CF_AD3FS_24K	11	256	24 kHz			
AD_CF_AD3FS_48K	10	128	48 kHz			
AD_CF_AD3FS_96K	01	64	96 kHz			
AD_CF_AD3FS_192K	00	32	192 kHz			

¹ The filter input is XTALI/2, or nominally 6.144 MHz.

 2 Sample rate when XTALI = 12.288 MHz.

AD_LEFT, AD_LEFT_LSB, AD_RIGHT, AD_RIGHT_LSB, AD_MONO and AD_MONO_LSB are the output data registers of the three AD filters. As a new data sample is calculated also an interrupt request is generated.

11.9 FM Receiver

The FM receiver in VS1005g is capable of receiving frequency modulated (FM) signals from 76 MHz to 108 MHz. The operation of FM receiver requires several modules:

- RF modules : VCO, LNA and Mixer
- Analog modules : Muxes, amplifiers and ADCs
- Digital modules : Digital filters and FM demodulator

As was shown in Figure 18. the FM receiver uses partially the same signal paths as the ADCs. When FM demodulator is used the stereo AD filter must be configured to 192 kHz sample rate and the decimation filter enabled with input selection from FM demodulator.

11.9.1 Configuring RF and Analog Modules for FM Receiver Mode

The front end configuration of the FM receiver is shown in Figure 19. The VCO is digitally controlled and set to an FM band as is explained in section "Configuring FM Demodulator".

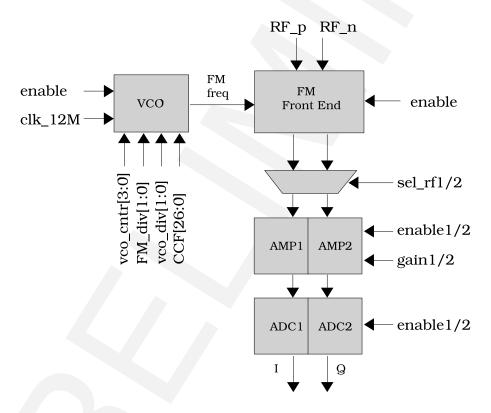


Figure 19: Block diagram of FM receiver, RF and analog section

To see how to configure the A/D converters for FM reception usage, see Chapter 11.8.1 on Page 64.

11.9.2 Configuring the FM Demodulator

The FM demodulator has several configuration registers that must be initialized in order to receive an FM channel. FM demodulator's control and data registers are listed in next table.

	FM Control and Data Registers						
Reg	Туре	Reset	Abbrev	Description			
0xFE40	r/w	0	FM_CF	FM demodulator control			
0xFE41	r/w	0	AD_CF	AD filter configuration			
0xFE42	r/w	0	FMPLL_LO	FM PLL carrier frequency bits [15:0]			
0xFE43	r/w	0	FMPLL_HI	FM PLL carrier frequency bits [28:16]			
0xFE44	r/w	0	FMCCF_LO	Carrier center frequency bits [15:0]			
0xFE45	r/w	0	FMCCF_HI[10:0]	Carrier center frequency bits [26:16]			
0xFE4E	r	0	DEC6_LEFT_LSB[15:14]	FM filter left channel bits [1:0]			
0xFE4F	r	0	DEC6_LEFT	FM filter left channel bits [17:2]			
0xFE50	r	0	DEC6_RIGHT_LSB[15:14]	FM filter right channel bits [1:0]			
0xFE51	r	0	DEC6_RIGHT	FM filter right channel bits [17:2]			
0xFE52	r	0	RDS_DATA	FM RDS data			
0xFE53	r	0	RDS_CHK[12:0]	FM RDS checkwork and block status			
0xFE5B	r	0	FM_PHSCL	FM I/Q phase error scaling factor			

FM_CF register is a configuration register which is used to select demodulator operation modes. The FMCCF_HI and FMCCF_LO are used to tune FM receiver to a certain channel. The FM-PLL_HI and FMPLL_LO registers are used to match xtal frequency to the stereo subcarrier frequency (38 kHz).

FM_CF Bits				
Name	Bits	Description		
	15	Reserved, use 0		
FM_CF_UAD2	14	Enable AD2 digital input		
FM_CF_UAD1	13	Enable AD1 digital input		
FM_CF_UAD3	12	Enable AD3 digital input		
	11:8	Reserved, Use "000"		
FM_CF_PHCOMP	7	Enable for FM I- and Q-signal scaling		
FM_CF_ENABLE	6	Enable & synchronize AD filters and FM demodulator		
FM_CF_RDSSYNC	5	FM RDS forced to keep synchronization		
FM_CF_MONO	4	FM receiver mono (1) / stereo (0) selection		
FM_CF_DEEMP	3	FM de-emphasis filter configuration $75\mu s$ or $50\mu s$		
FM_CF_RDSENA	2	FM RDS enable		
FM_CF_CCFLCK	1	FM carrier lock enable		
FM_CF_FM_ENA	0	FM demodulator enable		

In FM mode the registers FM_CF_UAD2 and FM_CF_UAD1 must be reset.

FM_CF_PHCOMP is the enable signal for FM input scaling.

FM_CF_ENABLE is the global enable for FM demodulator and AD filters. When zero, demodulators and mono/stereo AD filters are reset. To synchronize and use the demodulators, first

clear this bit, then set it.

FM_CF_RDSSYNC forces the RDS decoder to keep current symbol synchronization. When sync search is enabled (i.e. FM_CF_RDSSYNC is reset) the RDS decoder tries to find best symbol synchronization at all times, even when the FM signal is lost.

FM_CF_MONO register selects between mono and stereo receive modes. When set the mode is mono.

FM_CF_DEEMP register selects between 75μ s (North America) or 50μ s (Europe, Australia) de-emphasis filters. When set the de-emphasis is 75μ s.

FM_CF_RDSENA register enables the rds calculation logic when set.

FM_CF_CCFLCK register enables automatic FM fine tuning when set. When reset the FM band frequency is always at fixed value (as defined in FMCCF register).

FM_CF_FM_ENA is the FM demodulator enable. The register must be set when FM is used.

To receive in stereo mode the FM_PLL registers must be initialized correctly. These registers (FMPLL_HI and FMPLL_LO) set the FM stereo carrier PLL frequency. This factor is xtal dependent and is defined as:

 $pll_factor = \frac{(64 \times 2^{28} \times 38000 Hz)}{XTAL_freqHz}$

PLL value examples for most typical xtals				
XTALI frequency	FMPLL register			
12.0 MHz	54402918 = 0x033E1F66			
12.288 MHz	53127850 = 0x032A AAAA			
13.0 MHz	50218079 = 0x02FE 445F			

FMCCF_HI and FMCCF_LO are used to set FM tuning frequency (FM Carrier Center Frequency). These registers hold a 27-bit signed value which controls the frequency inside the selected VCO center frequency range. This VCO center frequency is set with divider registers ANA_CF3_DIV[1:0] and ANA_CF3_FMDIV[1:0].

VCO Divider Register		
ANA_CF3_DIV[1:0]	VCO Divider	
"00"	36	
"01" = "10"	30	
"11"	25	

FM divider			
ANA_CF3_FMDIV[1:0]	FM divider		
"00"	16		
"10"	20		
"11" = "01"	24		

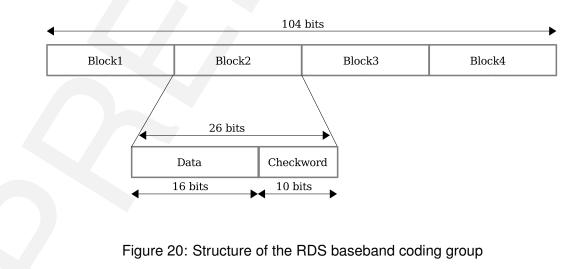
The VCO frequency is 24, 20 or 16 times the FM tuning frequency, i.e. for 95.0 MHz FM channel the VCO frequency must be set to 1.900 GHz. The target VCO frequency can be calculated from equation :

 $F_{vco} = (4 \times VCO_{div} + CCF) \times F_{xtal}$ where CCF is defined as $CCF = \frac{FMCCF_{reg}}{2^{21}} + 16$

and the FM channel frequency can be given as:

$$F_{FM} = ((4 \times VCO_{div} + CCF) \times F_{xtal}) / FM_{div}$$

For Full Speed USB FMCCF registers must be reset when XTALI = 12.000 MHz is used. When XTALI = 12.288 MHz is used the registers are initialized to 0xFF87, 0xFFFF (-7864321). FM_CF register is initialized to value 0x0041. This makes VCO frequency of 1.92GHz which results to 480 MHz USB clock.


FM_PHSCL Bits			
Name	Bits	Description	
FM_PHSCL_I[7:0]	15:8	I scaling factor	
FM_PHSCL_Q[7:0]	7:0	Q scaling factor	

FM_PHSCL register is used to compensate I and Q signal's phase and amplitude error. This error depends from several factors and values should be calculated for each FM band. The compensation logic is enabled when FM_CF_PHCOMP register is set. Typical values are 111 for I-scaling and 137 for Q-scaling.

DEC6_LEFT, DEC6_LEFT_LSB, DEC6_RIGHT and DEC6_RIGHT_LSB are the FM demodulator output data registers. Sample rate @12.288 MHz is 32 kHz (XTALI / 384).

11.9.3 Radio Data System (RDS)

FM demodulator includes an RDS module. This module decodes the RDS bits from baseband signal to form bit groups. When a full block is decoded the 16-bit data and 10-bit checkword are stored to registers and an RDS-interrupt is generated. RDS data structure is shown in Figure 20. RDS data rate is 1187.5 bits per second.

RDS module's control bits are in register FM_CF.

RDS Control Bits in Register FM_CF (address 0xFE40)			
Name Bit Index Description		Description	
FM_CF_RDSSYNC	5	FM RDS forced to keep current bit synchronization	
FM_CF_RDSENA	2	FM RDS enable	

RDS Control and Data Registers				
Reg	Туре	Reset	Abbrev	Description
0xFE52	r	0	RDS_DATA[15:0]	FM RDS data register
0xFE53	r	0	RDS_CHK[12:0]	FM RDS checkwork and block status

RDS_DATA and RDS_CHK registers store the last decoded RDS block. RDS module finds automatically bit and block synchronization but it does not do any data correction if crc errors exist. This must be done by software.

RDS_CHK Register Bits				
Reg	Bit index Name		Description	
RDS_CHK_CHKW	12:3	CHECKWORD	Checkword of the last received block data	
RDS_CHK_ST	2	STATUS	Validity of the last received block	
RDS_CHK_BLK	1:0	BLOCK	Index of the last received block, 0-3	

11.10 SPI Peripherals

VS1005g has two SPI (Serial Peripheral Interface) peripherals which can be configured as a master or a slave. Before SPIs can be used the VS1005g I/Os must be configured to peripheral mode:

- set I/O pins to peripheral mode : GPIO1_MODE register selects between spi mode or gpio mode
- Embedded Serial Flash disabled : SYSTEMPD_SFENA bit reset when using SPI0 (also boot device)
- Buffered SPI slave disabled : ETH_RXLEN_PMODE bit reset when using SPI1

SPI0 and SPI1 pins are mapped to GPIO1 port. To select peripheral mode the bits in GPIOx_MODE register must be set HIGH.

	SPI pins and their GPIOx_MODE register							
SPI	VS1005g Type		SPI	GPIO_MODE	Description			
id	pin		pin	register				
SPI0	XCS0/GPIO1[0]	i/o	XCS	GPIO1_MODE[0]	Master/slave chip select			
SPI0	SCLK0/GPIO1[1]	i/o	sclk	GPIO1_MODE[1]	Master/slave clock			
SPI0	MISO0/GPIO1[2]	i/o	miso	GPIO1_MODE[2]	Master input / slave output			
SPI0	MOSI0/GPIO1[3]	i/o	mosi	GPIO1_MODE[3]	Master output / slave input			
SPI1	XCS1/GPIO1[4]	i/o	XCS	GPIO1_MODE[4]	Master/slave chip select			
SPI1	SCLK1/GPIO1[5]	i/o	sclk	GPIO1_MODE[5]	Master/slave clock			
SPI1	MISO1/GPIO1[6]	i/o	miso	GPIO1_MODE[6]	Master input / slave output			
SPI1	MOSI1/GPIO1[7]	i/o	mosi	GPIO1_MODE[7]	Master output / slave input			

The SPIs are mapped in Y addresses 0xFC40 (SPI0) and 0xFC50 (SPI1).

SPI Registers							
SPI0 addr	SPI1 addr	Туре	Reset	Abbrev	Description		
0xFC40	0xFC50	r/w	0	SPIx_CF[11:0]	Configuration		
0xFC41	0xFC51	r/w	0	SPIx_CLKCF[9:0]	Clock configuration		
0xFC42	0xFC52	r/w	0	SPIx_STATUS[7:0]	Status		
0xFC43	0xFC53	r/w	0	SPIx_DATA	Sent / received data		
0xFC44	0xFC54	r/w	0	SPIx_FSYNC	SSI Sync data in master mode		
0xFC45	0xFC55	r/w	0	SPIx_DEFAULT	Data to send (slave) if		
					SPIx_ST_TXFULL='0'		

Main Configuration SPIx_CF Bits Bits Name Description SPI_CF_EARLYINT '1' = interrupt when SPI ST TXFULL clear (TX mode) 12 '0' = interrupt when no transfer ready (RX mode) SPI CF SRESET SPI software reset 11 SPI CF RXFIFOMODE '1' = interrupt only when FIFO register full or CS deasserted 10 with receive register full '0' = interrupt always when a word is received SPI CF RXFIFO ENA 9 **Receive FIFO enable** SPI CF TXFIFO ENA Transmit FIFO enable 8 xCS mode in slave mode SPI CF XCSMODE 7:6 SPI_CF_MASTER 5 Master mode SPI CF DLEN 4:1 Data length in bits SPI_CF_FSIDLE Frame sync idle state 0

SPI_CF_EARLYINT selects whether the SPI interrupt happens immediately when the SPI device is capable of taking new data (1, useful for when transmitting data), or only when the SPI transfer has been fully completed (0, useful when mostly receiving data). Note: This bit is only available since VS1005h.

SPI_CF_XCSMODE selects xCS mode for slave operation. '00' is interrupted xCS mode, '10' is falling edge xCS mode, and '11' is rising edge xCS mode.

SPI_CF_MASTER sets master mode. If not set, slave mode is used.

SPI_CF_DLEN+1 is the length of SPI data in bits. Example: For 8-bit data transfers, set SPI_CF_DLEN to 7.

SPI_CF_FSIDLE contains the state of FSYNC when SPI_ST_TXRUNNING is clear. This bit is only valid in master mode.

Clock Configuration SPIx_CLKCF Bits					
Name	Bits	Description			
SPI_CC_CLKDIV	9:2	Clock divider			
SPI_CC_INV_CLKPOL	1	Inverse clock polarity selection			
SPI_CC_INV_CLKPHASE	0	Inverse clock phase selection			

In master mode, SPI_CC_CLKDIV is the clock divider for the SPI block. The generated SCLK frequency $f = \frac{f_i}{2 \times (c+1)}$, where f_i is the internal clock frequency CLKI, and c is SPI_CC_CLKDIV. Example: With a 61.44 MHz clock, SPI_CC_CLKDIV=15 divides the master clock by 16, and the output/sampling clock would thus be $f = \frac{61.44 MHz}{2 \times (15+1)} = 3.84 MHz$.

SPI_CC_INV_CLKPOL reverses the clock polarity. If SPI_CC_INV_CLKPOL is clear the data is read at rise edge and written at fall edge if SPI_CC_INV_CLKPHASE is clear. When SPI_CC_INV_CLKPHASE is set the data is written at rise edge and read at fall edge.

SPI_CC_INV_CLKPHASE defines the data clock phase. If clear the first data is written when xcs is asserted and data is sampled at first clock edge (rise edge when SPI_CC_INV_CLKPOL = 0 and fall edge if SPI_CC_INV_CLKPOL = 1). If SPI_CC_INV_CLKPHASE is set the first data is written a the first data clock edge and sampled at second.

Status SPIx_STATUS Bits				
Name	Bits	Description		
SPI_ST_RXFIFOFULL	7	Receiver FIFO register full		
SPI_ST_TXFIFOFULL	6	Transmitter FIFO register full		
SPI_ST_BREAK	5	Chip select deasserted mid-transfer		
SPI_ST_RXORUN	4	Receiver overrun		
SPI_ST_RXFULL	3	Receiver data register full		
SPI_ST_TXFULL	2	Transmitter data register full		
SPI_ST_TXRUNNING	1	Transmitter running		
SPI_ST_TXURUN	0	Transmitter underrun		

SPI_ST_BREAK is set in slave mode if chip select was deasserted in interrupted xCS mode or a starting edge is encountered in xCS edge modes while a data transfer was in progress. This bit has to be cleared manually.

SPI_ST_RXORUN is set if a received byte overwrites unread data when it is transferred from the receiver shift register to the data register. This bit has to be cleared manually.

SPI_ST_RXFULL is set if there is unread data in the data register.

SPI_ST_TXFULL is set if the transmit data register is full.

SPI_ST_TXRUNNING is set if the transmitter shift register is in operation.

SPI_ST_TXURUN is set if an external data transfer has been initiated in slave mode and the transmit data register has not been loaded with new data to shift out. This bit has to be cleared manually.

Note: Because TX and RX status bits are implemented as separate entities, it is relatively easy to make asynchronous software implementations, which do not have to wait for an SPI cycle to finish.

SPIx_DATA[SPI_CF_DLEN:0] may be written to whenever SPI_ST_TXFULL is clear. In master mode, writing will initiate an SPI transaction cycle of SPI_CF_DLEN+1 bits. In slave mode, data is output as soon as suitable external clocks are offered. Writing to SPI_DATA sets SPI_ST_TXFULL, which will again be cleared when the data word was put to the shift register. If SPI_ST_TXRUNNING was clear when SPI_DATA was written to, data can immediately be transferred to the shift register and SPI_ST_TXFULL won't be set at all.

When SPI_ST_RXFULL is set, SPI_DATA may be read. Bits SPI_CF_DLEN:0 contain the received data. The rest of the 16 register bits are set to 0.

SPIx_FSYNC is meant for generation of potentially complex synchronization signals, including several SSI variants as well as a simple enough automatic chip select signal. SPIx_FSYNC is only valid in master mode.

If a write to SPIx_DATA is preceded by a write to SPIx_FSYNC, the data written to SPIx_FSYNC is sent to FSYNC pin with the same synchronization as the data written to SPIx_DATA is written to MOSI. When SPI_ST_TXRUNNING is clear, the value of SPI_CF_FSIDLE is set to FSYNC pin.

If SPIx_DATA is written to without priorly writing to SPIx_FSYNC, the last value written to SPIx_FSYNC is sent.

SPIx_FSYNC is double-buffered like SPIx_DATA.

The SPI block has one interrupt. Interrupt 0 request is sent when SPI_ST_BREAK is asserted, or when SPI_ST_TXFULL or SPI_ST_TXRUNNING is cleared. This allows for sending data in an interrupt-based routine, and turning chip select off when the device becomes idle.

11.11 Common Data Interfaces

VS1005g has a 3 KiB data buffer which is a dedicated peripheral memory. The memory can be configured to be used with:

- Ethernet interface
- Nand Flash Interface
- SD Card Interface
- Reed-Solomon Codecs

Block diagram of the data interfaces is shown in Figure 21.

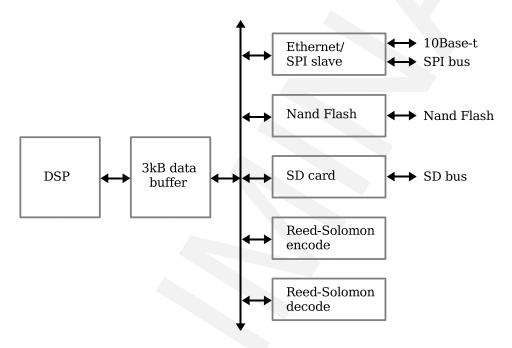


Figure 21: Block diagram of data interfaces

Each peripheral can be configured to use its own address space. The DSP interface has a read and write port with auto incrementing address register. The read operation is pipelined and requires two reads to fill the pipeline. After that the memory can be read on each instruction cycle. It should be noted that the memory is time multiplexed between the peripherals, with the DSP having absolute highest priority. Because of this, some idle cycles are required during long DSP read/write operations. As a guideline at least every 16th read cycle should be left idle by the DSP. The DSP interface has Error Correction Code (ECC) registers for nand flash. It uses 2D xor to protect and correct data.

	DSP Interface Registers for Peripheral Memory						
Reg	Туре	Reset	Abbrev	Description			
0xFC66	r	0	ECC_LP_LOW	ECC line parity register bits [15:0]			
0xFC67	r	0	ECC_CP_LP_HIGH	ECC column parity bits [5:0]			
				and line parity bits [17:16]			
0xFC68	r/w	0	XP_CF	Dsp interface control			
0xFC69	r/w	0	XP_ADDR	Memory address register for dsp interface, 11 bits			
0xFC6A	r/w	0	XP_ODATA	Memory write port for dsp			
0xFC6B	r	0	XP_IDATA	Memory read port for dsp			
0xFC6C	r/w	0	XP_ST	Interrupt status register for data buffer peripherals			

ECC_LP_LOW and ECC_CP_LP_HIGH are the error correction code data registers. They are modified when DSPI_ODATA or DSPI_IDATA ports are accessed. The DSPI_CF_ECCENA must be set in order to use ECC.

XP_CF Bits					
Name	Bits	Description			
XP_CF_ODAT	15:12	RS_ODATA mux control			
XP_CF_ECC_RST	9	ECC reset			
XP_CF_ECC_ENA	8	ECC enable			
XP_CF_WRBUF_ENA	1	Data buffer write enable			
XP_CF_RDBUF_ENA	0	Data buffer read enable			

XP_CF_ODAT is a control register for RS_ODATA register.

XP_CF_ECCRST and XP_CF_ECCENA control the ECC unit. XP_CF_ECCRST reset the unit when set. THe register is reset automatically after one clock cycle.

XP_CF_ECCENA register enables the ECC calculation. Column parity (CP) and line parity (LP) registers are modified when data is read from XP_ODATA or written to XP_IDATA register and XP_CF_ECCENA is set.

XP_CF_WRBUF_ENA and XP_CF_RDBUF_ENA enable the DSP access to the peripheral data buffer. When either register is set the XP_ADDR is incremented on each memory access and data is read (XP_IDATA) or written (XP_ODATA) to memory.

Data interfaces can generate only one interrupt request for the DSP, INT_XPERIP (see Chapter 11.4, *Interrupt Controller*. The interrupt source is stored in the interrupt status register XP_ST.

XP_ST is used to track the interrupt source of the peripherals using data buffer memory. With the exception of bit XP_ST_INT_ENA, and XP_ST_SPIERR_INT, a write to XP_ST bits clears the bits in the origin register that are set by the write. In other words, writing *b* to XP_ST performs the logical operation

XP_ST[13:10,8:0] = *XP_ST*[13:10,8:0] and (not b), *XP_ST*[14] = b[14], *XP_ST*[9] = *XP_ST*[9].

Example:

If value for XP_SP is 0x47FF, writing 0x440F to it will end up with $XP_ST = (0x440F \text{ and } 0x4000) \text{ or } (0x47FF \text{ and } 0x0200) \text{ or } (0x47FF \text{ and } (not 0x440F) \text{ and } 0x3DFF) = 0x4000 \text{ or } 0x0200 \text{ or } 0x01F0 = 0x43F0.$

XP_ST Bits					
Name	Bits	Description			
XP_ST_INT_ENA	14	Interrupt enable for data buffer peripherals			
XP_ST_ETXRB_HALF2_INT	¹ 13	Ethernet transmit ring buffer second half			
		empty			
XP_ST_ETXRB_HALF1_INT		Ethernet transmit ring buffer first half empty			
XP_ST_ERXRB_HALF2_INT		Ethernet receive ring buffer second half full			
XP_ST_ERXRB_HALF1_INT	¹ 10	Ethernet receive ring buffer first half full			
XP_ST_SPIERR_INT ²	9	SPI slave error, transfer was interrupted mid-			
		dle of byte			
XP_ST_RSEC_RDY_INT ¹	8	Reed-Solomon decode error correction data			
		ready			
XP_ST_RSDEC_RDY_INT ¹	7	Reed-Solomon decode ready			
XP_ST_RSENC_RDY_INT ¹	6	Reed-Solomon encode ready			
XP_ST_SD_INT ¹	5	SD card interface ready interrupt			
XP_ST_NF_INT ¹	4	Nand flash interface ready interrupt			
XP_ST_SPI_STOP_INT ¹	3	SPI slave stop interrupt, chip select to inactive			
		state			
XP_ST_SPI_START_INT ¹	2	SPI slave start interrupt, chip select to active			
		state			
XP_ST_ETHRX_INT ¹	1	Ethernet receiver new packet interrupt			
XP_ST_ETHTX_INT ¹	0	Ethernet transmitter ready interrupt			

Interrupt sources are listed in the table below.

¹ A write with the bit set will clear the bit.

² Read-only bit.

XP_ST_INT_ENA is the peripheral interrupt enable. When set the interrupt requests are forwarded to the interrupt controller. Interrupt requests in XP_ST are modified regardless of the value of XP_ST_INT_ENA.

The SPI slave error register (XP_ST_SPIERR_INT) is a read only register which is reset when SPI start is detected in the SPI bus and set if data transfer was interrupted in the middle of a byte.

11.11.1 Ethernet Controller

VS1005g has a controller for interfacing 10base-t ethernet bus. Additionally this peripheral can be configured to SPI slave mode to be used with VLSI Solution's RF link. In this mode the SPI1 pins are used and they must be configured to peripheral mode with GPIO1_MODE[7:4] registers.

Ethernet Controller Registers				
Reg	Туре	Reset	Abbrev	Description
0xFC60	r/w	0	ETH_TXLEN	Ethernet transmitter packet length
0xFC61	r/w	0	ETH_TXPTR	Ethernet transmitter memory address pointer
0xFC62	r/w	0	ETH_RXLEN	Ethernet receiver packet length
0xFC63	r/w	0	ETH_RXPTR	Ethernet receiver memory address pointer
0xFC64	r/w	0	ETH_RBUF	Ethernet transmitter/receiver ring buffer configuration
0xFC65	r	0	ETH_RXADDR	Ethernet receiver memory address, 11 bits

ETH_TXLEN Bits			
Name Bit		Description	
ETH_TXLEN_META	15	SPI slave synchronization configuration	
ETH_TXLEN_RX_BE	14	Set big endian SPI slave receiver bit order	
ETH_TXLEN_TX_BE	13	Set big endian SPI slave transmitter bit order	
ETH_TXLEN_LEN[11:0]	11:0	Ethernet transmitter packet size in bytes	

ETH_TXLEN_META register enables the use of higher bit rate. If the SPI slave and master are using same clock source this register can be set. The SPI slave synchronization is then made simpler. It is recommended to keep this register in reset. In ethernet mode this register is don't care.

ETH_TXLEN_RX_BE and ETH_TXLEN_TX_BE are used to reverse bit order in SPI mode. When registers are reset the bits are sent/received lsb bit first (i.e. from 0 to 7). When registers are set the bits are sent/received msb bit first (i.e. from 7 to 0). In ethernet mode these registers are don't care.

ETH_TXLEN[11:0] register is loaded with packet length (in bytes) before the transmitter is enabled. When transmitter is enabled this register is decremented after a byte has been sent. When the length register reached zero the transmitter returns to idle state. In SPI slave mode this register is zero.

ETH_TXPTR Bits				
Name	Bits	Description		
ETH_TXPTR_SPI_TX_ENA	15	SPI slave transmitter enable		
ETH_TXPTR_SPI_RX_ENA	14	SPI slave receiver enable		
ETH_TXPTR_BUSY	13	Ethernet transmitter busy		
ETH_TXPTR_START	12	Ethernet transmitter start-to-send packet		
ETH_TXPTR_PTR[10:0]	10:0	Ethernet transmitter memory address pointer		

ETH_TXPTR_SPI_TX_ENA and ETH_TXPTR_SPI_RX_ENA are the SPI slave mode enables for transmitter and receiver. SPI start and stop interrupts are generated even though these reg-

isters would be reset. It should be noted that when ETH_TXPTR_SPIRE is set the transmitter address pointer must be initialized to data start address. In ethernet mode these registers are don't care.

ETH_TXPTR_BUSY is the ethernet transmitter busy flag. In SPI slave mode this flag is set if transmitter is enabled and chip select line is in its active state (low).

ETH_TXPTR_START enables the ethernet transmitter. When this register is set the transmitter changes from idle to busy state and sends ETH_TXLEN[11:0] number of bytes. Before this register is set the packet data must be stored in peripheral memory and tx address pointer and tx packet length registers must be configured. In SPI slave mode this register is zero.

ETH_TXPTR[10:0] is the ethernet/SPI transmitter memory address pointer. This pointer is loaded with packet start address before transmitter is enabled.

ETH_RXLEN Bits				
Name	Bits	Description		
ETH_RXLEN_SPIMODE	15	Peripheral mode select: Ethernet (0) / SPI slave mode (1)		
ETH_RXLEN_SPIINVCLK	14	SPI slave transmitter clock configuration		
ETH_RXLEN_LEN[11:0]	11:0	Ethernet receiver packet size in bytes		

ETH_RXLEN_SPIMODE register configures the peripheral to ethernet mode or to SPI slave mode. When register is reset (default state) the peripheral is in ethernet mode.

ETH_RXLEN_SPIINVCLK selects SPI slave transmitter clock edge. When register is reset the SPI out data is written after falling SPI clock edge. When register is set the data is written after rise edge. With high SPI bit rates (SPI clock > core clock / 6) the rise edge should be used. It should be noted that the SPI slave clock can not exceed core clock / 4 at any time. In ethernet mode this register is don't care.

ETH_RXLEN_LEN[11:0] register is loaded with ethernet/SPI receiver packet length counter when receiver returns from busy state to idle (packet end). Packet length is given in bytes.

ETH_RXPTR Bits				
Name	Bits	Description		
ETH_RXPTR_CRCOK	15	Ethernet receiver crc status flag		
ETH_RXPTR_NEWPKT	14	Ethernet receiver packet received flag		
ETH_RXPTR_BUSY	13	Ethernet receiver busy		
ETH_RXPTR_ENA	12	Ethernet receiver enable		
ETH_RXPTR_PTR[10:0]	10:0	Ethernet receiver memory address pointer		

ETH_RXPTR_CRCOK is the received packet crc status flag. Receiver sets the flag if the received packet crc was correct. Flag must be reset by user (write '1'). In SPI slave mode the crc flag is set if last four bytes were 0xFF.

ETH_RXPTR_NEWPKT is the flag for incoming packet. The receiver sets the flag when it changes its state from busy to idle. Flag must be reset by user (write '1'). In spi mode this register is zero.

ETH_RXPTR_BUSY is a busy flag for ethernet/SPI slave receiver. This receiver sets the flag when changes its state from idle to busy state.

ETH_RXPTR_ENA register places the ethernet receiver on hold for incoming packet when set. When packet start is detected the receiver switches from idle to busy state. Receiver address pointer must be configured before this register is set. In SPI slave mode this register controls the SPI receiver enable. When register is set the SPI transmit end automatically enables the SPI receiver.

ETH_RXPTR[10:0] is the ethernet/SPI receiver memory pointer. This pointer is loaded with packet start address before receiver is enabled. When receiver changes it state from idle to busy this register is loaded to memory write address pointer register.

ETH_RBUF Bits				
Name Bits Description				
ETH_RBUF_CLKCF	9:8	Reserved, use "00"		
ETH_RBUF_TXENA		Ethernet transmitter ring buffer enable		
ETH_RBUF_TXCF	6:4	Ethernet transmitter ring buffer configuration		
ETH_RBUF_RXENA		Ethernet receiver ring buffer enable		
ETH_RBUF_RXCF	2:0	Ethernet receiver ring buffer configuration		

ETH_RBUF_TXENA and ETH_RBUF_RXENA are ring buffer enable registers for transmitters and receiver respectively. Ring buffer size is defined with ETH_RBUF_TXCF and ETH_RBUF_RXCF registers as explained in table below.

Ring buffer configuration bits							
Name	CF register	Ring buf. size	Locked bits	Incremented bits			
ETH_RBUF_TXCF_1024W ¹	111-100	1024 words	[10]	[9:0]			
ETH_RBUF_TXCF_512W ¹	011	512 words	[10:9]	[8:0]			
ETH_RBUF_TXCF_256W ¹	010	256 words	[10:8]	[7:0]			
ETH_RBUF_TXCF_128W ¹	001	128 words	[10:7]	[6:0]			
ETH_RBUF_TXCF_64W ¹	000	64 words	[10:6]	[5:0]			

¹ For the corresponding RX configuration register, use name ETH_RBUF_RXCF_xxxW instead, where xxx is the ring buffer size.

ETH_RXADDR register is the current memory address were receiver stores data. This register is loaded with ETH_RXPTR[10:0] when new packet start is detected in bus.

Ethernet controller generates an interrupt each time a new packet is received or transmitter has finished sending a packet. When ring buffers are used the interrupt is given also when ring buffer address pointer has reached middle or end of the configured buffer size.

11.11.2 Reed-Solomon Codec

VS1005g has a Reed-Solomon encoder and decoder for error correction e.g. from nand flash data. Reed Solomon is a forward error correction code which adds redundancy at the end of the message. The code word length n is defined as k + 2*t where k is the maximum number of data symbols (pay load) and 2*t is the number of parity check symbols. The algorithm can fix up to t symbols from code word and detect 2*t errors.

The Reed Solomon codec in VS1005g supports two different code lengths

- NF: n = 1023 symbols and t = 4. This makes 2*t = 8 10-bit parity check symbols. The data symbols are interpreted as 8-bit symbols where the two msb bits are always zero.
- RF: n = 255 symbols and t = 16. This makes 2*t = 32 8-bit parity check symbols. Also the data symbols are 8 bits wide.

	VS1005g Reed Solomon Codecs						
Codec	Data Symbols (k)	Symbol Width	Check Symbols (2*t)	Typical Code Width (n)			
NF	<u>≤</u> 1015	8 / 10 bits	8 (10 bits)	518 + 8			
RF	≤ 223	8 bits	32 (8 bits)	223 + 32			

The NF codec is used for multi level cell (MLC) flash error detection and correction. Therefore the symbol width is limited to 8 bits for data symbols. The R-S encoder generates eight 10-bit parity check symbols (80 bits) which are stored with 518-byte user data. These check symbols are organized as 10 8-bit symbols which are stored to memory chip. The code word would therefore be a total of 528 bytes long.

NF Reed Solomon encoder check symbols are outputed as five 16-bit words (80 bits total). These check symbol words can be read from RS_DATA port when the RS encoder has finished calculation. The check symbol organization is as listed in the table.

NF Reed Solomon Encoder Check Symbol Organization						
Check Symbol	RS Encoder output word bits					
0	word[0](1:0)	&	word[0](15:8)			
1	word[1](11:8)	&	word[0](7:2)			
2	word[1](5:0)	&	word[1](15:12)			
3	word[2](15:8)	&	word[1](7:6)			
4	word[3](9:8)	&	word[2](7:0)			
5	word[3](3:0)	&	word[3](15:10)			
6	word[4](13:8)	&	word[3](7:4)			
7	word[4](7:0)	&	word[4](15:14)			

RF Reed Solomon encoder outputs the 8-bit check symbols as 16 16-bit words. Here the 32 8-bit symbols are organized in big endian format. This codec provides a means to detect 32 symbo errors and to fix 16 symbols.

The NF Reed Solomon decoder makes it possible to detect 8 symbol errors and to fix a maximum of 4 symbols. The decoder first reads the data symbols and then the parity check words.

As the check symbols are 10 bits they must be organized into memory in this format before check symbol decoding is started. The encoder expects them to be in LSB bits (9:0) in consecutive memory locations. The decoder returns the number of total errors and the number of errors in data symbols. Only the data symbol errors are returned as location / magnitude pairs when Reed Solomon decoder has finished the calculation. These errors must be fixed by software to the code word by XORing magnitude to the error location data. The location / magnitude pairs are stored in memory.

Reed Solomon codecs use a shared interrupt source INT_XPERIP. The source of interrupt is stored in register XP_ST where the decoder has one bit for Reed Solomon encoder and two bits for Reed Solomon decoder. To enable the interrupts the XP_ST_INT_ENA must be set.

Reed Solomon interrupts in XP_ST Register			
Name Bits Description			
XP_ST_INT_ENA	14	Interrupt enable, active high	
XP_ST_RSEC_RDY	8	Reed-Solomon decode error correction ready	
XP_ST_RSDEC_RDY	7	Reed-Solomon decode ready	
XP_ST_RSENC_RDY	6	Reed-Solomon encode ready	

	Reed-Solomon Registers					
Reg	Туре	Reset	Abbrev	Description		
0xFC70	r	0	RS_ST	Reed-Solomon status for encoder and decoder		
0xFC71	r/w	0	RS_CF	Reed-Solomon control and configuration register		
0xFC72	r/w	0	RS_EPTR	Reed-Solomon encoder memory pointer		
0xFC73	r/w	0	RS_ELEN	Reed-Solomon encoder data length in bytes		
0xFC74	r/w	0	RS_DPTR	Reed-Solomon decoder memory pointer		
0xFC75	r/w	0	RS_DLEN	Reed-Solomon decoder data length		
0xFC76	r	0	RS_DATA	Data read port		

RS_ST Bits				
Name	Bits	Description		
RS_ST_DNERR	12:8	Number of errors in decoded code word		
RS_ST_DFFAIL	6	Decoder fix algorithm found too many errors		
RS_ST_DFRDY2	5	Decoder fix algorithm completed		
RS_ST_DFBUSY	4	Decoder fix algorithm is calculating magni-		
		tude and location pairs		
RS_ST_DFRDY1	3	Decoder fix algorithm part 1 completed		
RS_ST_DFAIL	2	Code word errors can not be fixed		
RS_ST_DERR	1	Code word has errors		
RS_ST_DOK	0	Code word does not contain errors		

RS_ST_DNERR is the error count register. When R-S decoder fix algorithm has completed the number of location/magnitude pairs is stored to this register.

RS_ST_DFFAIL register is set when the decoder algorithm could not fix all the errors in code word.

RS_ST_DFRDY2, RS_ST_DFBUSY and RS_ST_DFRDY1 are monitoring the status of R-S

decoder. When both ready register are set the error correcting agorithm has completed and an interrupt request is generated.

RS_ST_DFAIL is set when a fatal error was encountered. It is not possible to restore code word. RS_ST_DFAIL is modified after code end was given (RS_CF_DEND set by user)

RS_ST_DERR flag is set if code word has errors. RS_ST_DERR is modified after code end was given (RS_CF_DEND was set by user). If this flag was set the error correcting algorithm is started automatically.

RS_ST_DOK flag is set if code word does not has errors. RS_ST_DOK is modified after code end was given (RS_CF_DEND was set by user).

RS_CF Bits				
Name	Bits	Description		
RS_CF_DNF	13	R-S decoder nand flash mode select		
RS_CF_D10B	12	R-S decoder 10-bit input data		
RS_CF_DEND	11	R-S decoder code end		
RS_CF_DSTR	10	R-S decoder code start		
RS_CF_DENA	9	R-S decoder enable		
RS_CF_DMODE	8	R-S decoder mode control		
RS_CF_SEL[3:0]	7:4	R-S encoder parity select for RS_OPORT		
RS_CF_ENF	3	R-S encoder nand flash mode select		
RS_CF_ESTR	2	R-S encoder code start		
RS_CF_EENA	1	R-S encoder enable		
RS_CF_EMODE	0	R-S encoder mode control		

RS_CF_DNF selects between two data input modes. When set the decoder uses nand flash input data register as input. When reset the data is fetched from peripheral memory.

RS_CF_D10B selects between 10-bit and 8-bit input modes. Normally the symbols are 8-bit and two MSB zero bits are added. When RS_CF_D10B is set the symbols are fetched from peripheral memory as 10-bit and the two MSB bits are not zeroed. In 10-bit mode the data is in bits [9:0] and it is fetched from memory in word format. This bit is set when NF parity check symbols are decoded. When decoding the 10-bit check symbols the decoder does not generate RS decoder interrupt XP_ST_RSDEC_RDY.

RS_CF_DEND is a code end register for decoder. When this register is set the decoder stops decoding current code word and the status can be read from RS_ST register. If code word contained symbol errors the symbol error correction algorithm is started automatically. The location and magnitude pairs needed to fix corrupted symbols are placed in memory from RS_DPTR address onwards. The RS_DPTR value is not incremented during calculation and it holds the start address of the location / magnitude pairs in memory. The progress of the calculation is visible in RS_ST register. When the location / magnitude pairs are calculated an XP_ST_RSEC_RDY interrupt is generated. RS_CF_DEND register is automatically reset after one clock cycle.

RS_CF_DSTR initializes the R-S decoder i.e. starts a new decoding sequence. This register is reset automatically when first symbol is decoded.

RS_CF_DENA enables the R-S decoder. When RS_CF_DNF is set the decoder is decoding symbols as they are read from nand flash. If RS_CF_DNF is reset the decoder starts reading

symbols from peripheral memory from address RS_DPTR onwards. The symbols are fetched from memory as 8-bit or 10-bit symbols but are always forwarded to decoder as 10-bit symbols where bits [9:8] are zero if RS_CF_D10B is reset. The decoder decodes RS_DLEN number of symbols and then reset RS_CF_DENA. Also an XP_ST_RSDEC_RDY interrupt request is generated.

RS_CF_DMODE register should be set when decoding nand flash data (10-bit NF). When reset the 8-bit code is used (RF).

RS_CF_SEL is used to select encoded parity symbols. The selected parity symbol can be read from RS_DATA register.

RS_CF_ENF selects between two data input modes. When set the encoder uses nand flash output data register as input. When reset the data is fetched from peripheral memory.

RS_CF_ESTR initializes the R-S encoder i.e. starts a new encoding sequence. This register is reset automatically when first symbol is encoded. The encoder does not need encode-end register as the check symbols are updated on-the-fly and are readable from the RS_DATA port after the current operation has finished.

RS_CF_EENA enables the R-S encoder. When RS_CF_ENF is set the encoder is encoding symbols as they are written to nand flash. If RS_CF_ENF is reset the encoder starts reading symbols from peripheral memory from address RS_EPTR onwards. The symbols are fetched from memory as 8-bit data but are forwarded to encoder as 10-bit symbols where bits [9:8] are always zero. The big endian byte order is expected. The encoder encodes RS_ELEN number of symbols and then reset RS_CF_EENA. Also an XP_ST_RSENC_RDY interrupt request is generated.

RS_CF_EMODE register should be set when encoding nand flash data (10-bit). When reset the 8-bit code is used (RF).

RS_EPTR and RS_DPTR are the 11-bit address registers for Reed-Solomon encoder and decoder. The start address of data is written to these registers prior the encode or decode is enabled. The big endian byte order is expected.

RS_ELEN and RS_DLEN are the code length registers for the encoder and decoder. The length is given as the number of 8-bit symbols. For decoder the symbols can also be 10-bit parity check symbols.

RS_OPORT Mux Control Bits				
XP_CF[15:12] register	Mux input			
1111-1100	Reserved			
1011	R-S decoder total errors (data + check symbols), 5 bits			
1010-0100	Reserved			
0011	R-S decoder CSF index, 10 bits			
0010	R-S decoder BM index, 9 bits			
0001	R-S decoder syndrome index, 10 bits			
0000	R-S encoder parity word as selected with RS_CF[7:4], 16 bits			

RS_DATA is a data read port for several data registers.

11.11.3 Nand Flash Interface

Nand Flash Controller Registers						
Reg	Туре	Reset	Abbrev	Description		
0xFC77	r/w	0	NF_CF	Nand flash configuration register		
0xFC78	r/w	0	NF_CTRL	Nand flash control register		
0xFC79	r/w	0	NF_PTR	Nand flash memory pointer		
0xFC7A	r/w	0	NF_LEN	Nand flash data length register (bytes)		

NF_CF Bits				
Name Bits Description				
NF_CF_SCLK_INV	9	Slave mode clock active edge select		
NF_CF_SLAVE	8	Slave mode enable		
NF_CF_FLT_BUS	7	Nand flash output bus float enable		
NF_CF_INT_ENA	6	Nand flash interface interrupt enable		
NF_CF_WAITSTATES	5:0	Nand flash interface clock configuration		

NF_CF_SCLK_INV selects slave mode active clock edge. If set the data bus is read at rising edge of ready/busy line, when reset at falling edge.

NF_CF_SLAVE configures the nand flash interface to slave input mode. In slave mode the nand flash interface reads data from 8-bit bus and stores it to memory. The clock is the ready/bysy input.

NF_CF_FLT_BUS leaves the data output bus (flash input bus) floating when set. When reset the bus is driven to low or high state.

NF_CF_INT_ENA enables the nand flash interrupt request when set.

NF_CF_WAITSTATES configures the length of nand flash read enable and write enable pulses. The cycle time is $2 \times (NF_CONF_WS + 1) dsp clock cycles.$

NF_CTRL Bits				
Name Bits Description		Description		
NF_CTRL_RDY	4	Status of nand flash ready line		
reserved	3	Set to 0		
NF_CTRL_READSEL	2	Read (1) or write (0) select		
NF_CTRL_ENA	1	Start nand flash read or write		
NF_CTRL_USEPERIP	0	Use peripheral memory		

NF_CTRL_RDY register is monitoring the current state of nand flash ready/busy line. The line has pull-up and when it is in its low state the flash chip is busy.

NF_CTRL_READSEL is a read or write select. When this register is set the operation is a nand flash read. When reset the nand flash interface writes to flash.

NF_CTRL_ENA starts nand flash read or write when set. When all bytes are transfered this register is reset and an interrupt request is generated.

NF_CTRL_USEPERIP configures nand flash interface to use peripheral memory when set. If NF_CTRL_USEPERIP is reset when nand flash interface is enabled, the data is read from

XP_IDATA register or written to XP_ODATA register. This is a one byte transaction and big endian format is used.

NF_PTR Bits			
Name Bits Description		Description	
NF_PTR_RENA	15	Ring buffer enable for slave mode	
NF_PTR_RCF	14:12 Ring buffer configuration for slave mode		
reserved 11 Set to 0		Set to 0	
NF_PTR_PTR[10:0]	10:0	Nand flash memory pointer	

NF_PTR[10:0] is the memory pointer register.

NF_PTR_RENA and NF_PTR_RCF configure a ring buffer for slave mode. In ring buffer mode only the lower address bits are modified and higher bits are locked. E.g. when 512 word buffer size is used the ring buffer uses memory addresses 0 - 511 when NF_PTR[10:9] bits are 0b00, addresses 512-1023 when bits are 0b10 and so on.

Ring buffer configuration bits						
CF register	Ring buffer size	Locked bits	Incremented bits			
111-100	1024 words	[10]	[9:0]			
011	512 words	[10:9]	[8:0]			
010	256 words	[10:8]	[7:0]			
001	128 words	[10:7]	[6:0]			
000	64 words	[10:6]	[5:0]			

Ring buffer mode generates interrupt in the mid and end addresses of the buffer.

NF_LEN defines the number of bytes that are read from or written to nand flash. The length is given in bytes. In read and write operations the data uses big endian format, i.e. the MSB part is transmitted first.

11.11.4 SD Card Interface

VS1005g has a SD card interface which supports 1-bit and 4-bit data bus.

SD Card Interface Registers							
Reg	Туре	Reset	Abbrev	Description			
0xFC7C	r/w	0	SD_PTR	SD card memory address pointer			
0xFC7D	r/w	0	SD_LEN	SD card data length, in bytes			
0xFC7E	r/w	0	SD_CF	SD card configuration register			
0xFC7F	r/w	0	SD_ST	SD card status register			

SD_PTR is the 11-bit memory pointer register.

SD_LEN defines the number of bytes that are read from or written to SD card. The length is given in bytes.

SD_CF Bits			
Name Bits Desc		Description	
SD_CF_NOCRCTX	12	Do not send crc (continued operation)	
SD_CF_NOCRCRST	11	Do not reset crc register (continued operation)	
SD_CF_4BIT	10	Use 4-bit data bus mode	
SD_CF_ENA	7	Start SD card transfer	
SD_CF_READSEL	6	Read (1) or write (0) select	
SD_CF_CMDSEL	5	Command or data transfer select	
SD_CF_NOSTARTB	4	Skip data start bit (continued operation)	
SD_CF_NOSTOPB	3	Do not add data stop bit (continued operation)	
SD_CF_CRC16	2	Enable crc16 calculation during write	
SD_CF_CRC7	1	Enable crc7 calculation during write	
SD_CF_POLL	0	Poll for start bit when read	

SD_CF_NOCRCTX makes the interface to skip crc transfer.

SD_CF_NOCRCRST makes the interface to continues crc calculation from previous transfer.

SD_CF_4BIT forces the interface to use 4-bit data transfer instead of 1-bit if set.

SD_CF_ENA start SD card read or write transfer when set.

SD_CF_READSEL register selects a read transfer.

For code clarity SD_CF_WRITESEL has also been defined (as zero).

SD_CF_CMDSEL register selects between command and data transfers. For code clarity SD_CF_DATASEL has also been defined (as zero).

SD_CF_NOSTARTB register forces the interface to skip start bit when set.

SD_CF_NOSTOPB register forces the interface to skip stop bit when set.

SD_CF_CRC16 and SD_CF_CRC7 enable the crc calculation. Crc is send automatically if SD_CF_NOCRCTX is reset.

SD_CF_POLL forces the SD card interface to search for start bit when reading command response or data. If start bit is not found during 256 SD clock cycles the operation is cancelled

and SD_ST_NOSTR error flag is set.

SD_ST Bits			
Name	Bits	Description	
SD_ST_WAITSTATES	12:8	SD card clock configuration	
SD_ST_REPEAT	7	Repeat mode enable	
Reserved	6	Use '0'	
SD_ST_CMDBRK	5	cmd response during data transfer	
SD_ST_DAT0	4	SD card dat0 bus state	
SD_ST_NOSTOPB_ERR	3	data stop bit missing error	
SD_ST_CRC16_ERR	2	crc16 error when reading data	
SD_ST_CRC7_ERR	1	crc7 error when reading command response	
SD_ST_NOSTARTB_ERR	0	timeout error when reading, no start bit	

SD_ST_WAITSTATES configures the length of SD card clock cycle. The cycle time is 2 x (SD_ST_WAITSTATES + 1) dsp clock cycles.

SD_ST_REPEAT sets the interface into a pattern generation mode. In this mode the SD data lines repeat a 512 byte buffer continuously. The buffer's location in memory can be set with registers SD_PTR[10:8]. In this mode all other SD_ST and SD_CF registers should be reset. The SD_ST_WS and SD_CF_4BIT have their usual meaning.

SD_ST_CMDBRK is set if a cmd start bit is found during data transfer. This register is reset at the start of each SD card op.

SD_ST_DAT0 register samples the SD cards data 0 line.

SD_ST_NOSTOPB_ERR is set if stop bit was not found when reading data from SD card.

SD_ST_CRC16_ERR is set if crc16 error was detected when reading data from SD card.

SD_ST_CRC7_ERR is set if command response had a crc7 error.

SD_ST_NOSTARTB_ERR is set if start bit was not found during 256 SD clocks.

For code clarity also SD_ST_ANY_ERR has been defined as (SD_ST_NOSTOPB_ERR | SD_ST_CRC16_ERR | SD_ST_CRC7_ERR | SD_ST_NOSTARTB_ERR).

11.12 USB Peripheral

VS1005g has a Full Speed Universal Serial Bus. The Universal Serial Bus Controller handles USB 2.0 data traffic at 12 Mbit/s signalling speed. The devices support a maximum of four endpoints.

The USB implementation is based on transceiver macromodel interface (UTMI). Block diagram of usb modules is shown in Figure 22

Simplified UTM module diagram is shown in Figure 23.

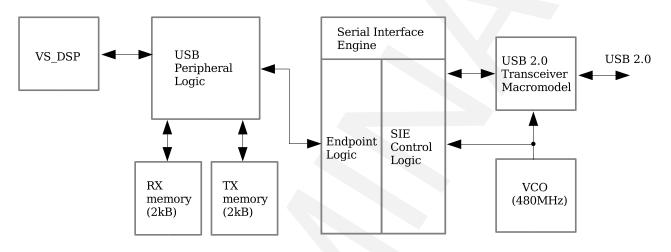
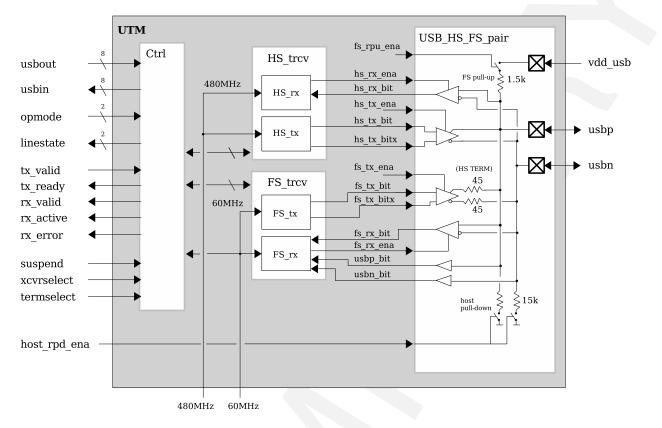



Figure 22: VS1005g USB block diagram

The USB device can handle traffic for the control endpoint (0) plus three input and output endpoints. Bulk, Isochronous and Interrupt transfer modes are supported at Full Speed (12 Mbit/s). The maximum packet size is 1023 bytes.

4 kilobytes of Y data memory is used as the USB packet buffer: 2 KiB for incoming packets (X:0xF400-0xF7FF) and 2 KiB for outgoing packets (X:0xF800-0xFBFF). The input buffer is a ring buffer with incoming packets consisting of a status word and n data words. The output buffer has 16 possible start locations for outgoing packets at 128-byte (64-address) intervals (note that all data addressing in VS1005g is based on 16-bit words).

11.12.1	USB	Peripheral	Registers
---------	-----	------------	-----------

Universal Serial Bus Controller Registers					
Address	Register	Function			
0xFC80	USB_CF	USB Device Config			
0xFC81	USB_CTRL	USB Device Control			
0xFC82	USB_ST	USB Device Status			
0xFC83	USB_RDPTR[9:0]	Receive buffer read pointer			
0xFC84	USB_WRPTR[9:0]	Receive buffer write pointer			
0xFC85	USB_UTMIR	UTM read control			
0xFC86	USB_UTMIW	UTM write control			
0xFC87	USB_HOST	Host control			
0xFC88	USB_EP_SEND0	EP0IN Transmittable Packet Info			
0xFC89	USB_EP_SEND1	EP1IN Transmittable Packet Info			
0xFC8A	USB_EP_SEND2	EP2IN Transmittable Packet Info			
0xFC8B	USB_EP_SEND3	EP3IN Transmittable Packet Info			
0xFC90	USB_EP_ST0	Flags for endpoints EP0IN and EP0OUT			
0xFC91	USB_EP_ST1	Flags for endpoints EP1IN and EP1OUT			
0xFC92	USB_EP_ST2	Flags for endpoints EP2IN and EP2OUT			
0xFC93	USB_EP_ST3	Flags for endpoints EP3IN and EP3OUT			

USB_CF Bits			
Name Bits		Description	
USB_CF_RST	15	Reset Active	
USB_CF_HDTOG	14	Reset value of host data toggle (set to 0)	
USB_CF_DDTOG	13	Reset value of device data toggle (set to 0)	
	12	Reserved, use '0'	
USB_CF_NOHIGHSPEED	11	Set to disable high speed functionality.	
USB_CF_DTOGERR	10	Data Toggle error control (set to 0)	
USB_CF_MASTER	9	Set for master/host mode	
USB_CF_RSTUSB	8	Reset receiver (set to 0)	
USB_CF_USBENA	7	Enable USB	
USB_CF_USBADDR	6:0	Current USB address	

USB_CTRL Bits			
Name Bits		Description	
USB_CTRL_BUS_RESET	15	Interrupt mask for bus reset	
USB_CTRL_SOF	14	Interrupt mask for start-of-frame	
USB_CTRL_RX	13	Interrupt mask for receive data	
USB_CTRL_TX	11	Interrupt mask for transmitter empty (idle)	
USB_CTRL_NAK	10	Interrupt mask for NAK packet sent to host	
USB_CTRL_TIME	9	Interrupt mask for bus timeout	
USB_CTRL_SUSP	8	Interrupt mask for suspend request	
USB_CTRL_RESM	7	Interrupt mask for resume request	
USB_CTRL_BR_START	6	Interrupt mask for start of bus reset	
USB_CTRL_DCON	5	Interrupt mask for usb disconnected	
USB_CTRL_CF	0	USB Configured. $0 \rightarrow 1$ transition loads dtogg-	
		host and dtogg-device	

USB_ST Bits			
Name	Bits	Description	
USB_ST_BRST	15	Bus reset occurred	
USB_ST_SOF	14	Start-of-frame	
USB_ST_RX	13	Receive data	
USB_ST_TX_HLD	12	Transmitter holding register empty	
USB_ST_TX_EMPTY	11	Transmitter empty (idle)	
USB_ST_NAK	10	NAK packet sent to host	
USB_ST_TIME	9	Bus time out	
USB_ST_SUSPI	8	Device suspended	
USB_ST_RES	7	Device resumed	
USB_ST_MTERR	6	Bus reset start / USB master toggle error	
USB_ST_STAT	5	Device disconnected / Status setup	
USB_ST_SPD	4	USB speed	
USB_ST_PID	3:0	Packet id / Endpoint number of last rx/tx trans-	
		action	

The USB_ST_PID can be used mainly for debugging purposes.

USB_RDPTR Bits				
Name Bits Description				
USB_RDPTR	9:0	Packet Read Pointer		

This buffer marks the index position of the last word that the DSP has successfully read from the receive packet buffer. DSP should control this register and update the position after each packet it has read from the receive buffer. After reset this register is zero.

USB_WRPTR Bits			
Name Bits Description			
USB_WRPTR	9:0	Packet Write Pointer	

After a packet has been received from the PC, the USB hardware updates this pointer to the receive buffer memory. USB_WRPTR is index location of the next free word location in the USB receive buffer. When USB_RDPTR equals to USB_WRPTR, the packet input buffer is empty. After reset this register is zero.

USB_UTMIR Bits					
Name Bits Description					
USB_UTMIR_LSTATE	15:14	USB bus line state			
USB_UTMIR_CNT	13:0	USB frame counter, master mode			

USB_UTMIW Bits						
Name	Bits	Description				
USB_UTMIW_ORIDE	15	Bus override				
	14	Reserved, use '0'				
USB_UTMIW_J	6	Drive chirp J				
USB_UTMIW_HSHK	5	Reset handshake				
USB_UTMIW_K	4	Drive chirp K				
USB_UTMIW_RCVSEL	3	Receiver select				
USB_UTMIW_TERMSEL	2	Termination select				
USB_UTMIW_OPMOD	1:0	Operation mode				

USB_HOST Bits						
Name Bits Description						
USB_HOST_PID 15:12 USB host packet id						
USB_HOST_ISOC	11	Disable NAK packet send				
USB_HOST_TX	9	USB host send packet				

USB_EP_SENDn Bits						
Name Bits Description						
USB_EP_SEND_TXR	15	Packet ready for transmission				
USB_EP_SEND_ADDR	13:10	Starting location of packet				
USB_EP_SEND_LEN	9:0	Length of packet in bytes (01023)				

When the DSP has written a packet into the transmit buffer, that is ready to be transmitted to the PC by an endpoint, the DSP signals the USB firmware by setting the value of the USB_EP_SENDn register of the endpoint that should transmit the packet (USB_EP_SEND0 for endpoint 0, USB_EP_SEND1 for endpoint 1 etc).

USB_EP_STn Bits						
Name	Bits	Description				
EPnOUT (PC $ ightarrow$ Device) endpoint (0 3) flags						
USB_EP_ST_OTYP	15:14	00=bulk 01=interrupt 11=isochronous				
USB_EP_ST_OENA	13	1=enabled 0=disabled				
USB_EP_ST_OSTL	12	Force STALL				
USB_EP_ST_OSTL_SENT	11	At least 1 STALL sent				
reserved	10:8	Use '0'				
EPnIN (Device	$ extbf{e} ightarrow extbf{PC}$)	endpoint (0 3) flags				
USB_EP_ST_ITYP	7:6	00=bulk 01=interrupt 11=isochronous				
USB_EP_ST_INT_ENA	5	1=enabled 0=disabled				
USB_EP_ST_ISTL	4	Force STALL				
USB_EP_ST_ISTL_SENT	3	At least 1 STALL sent				
USB_EP_ST_INAKSENT	2	At least 1 NAK sent				
USB_EP_ST_IXMIT_EMP	1	Transmitter empty				
reserved	0	Use '0'				

11.12.2 USB Clocking Modes

USB usage requires a special clock setup. The core clock must be set to 60 MHz. If only Full Speed USB is used the 60 MHz clock can be achieved byt placing the PLL to 5x clocking mode and using 12.000 MHz XTAL. Alternatively, if XTAL is e.g. 12.288 MHz, 60 MHz can be generated with the RF PLL which can be programmed with fractional multiplier factors.

11.12.3 USB Host

USB module can be configured as an USB host. In USB host mode the 1.5kOhm pull up resistor in D+ pin is replaced with 15kOhm pull down resistors in in both the D+ and D- pins.

USB host is capable of:

- Send Start of Frame (SOF) packets
- Send SETUP, IN and OUT packets
- Schedule transfers within 1ms frames
- Signal USB bus reset
- Provide USB power management

11.13 Interruptable General Purpose IO Ports 0-2

VS1005g has 3 general purpose IO ports that can operate either in GP mode or in perip mode. In order to use pins as gpio the GPIOx_MODE registers must be reset (default value).

GPIO ports 0 and 1 are 16 bits wide and GPIO port 2 is 14 bits wide.

Interruptable General I/O GPIOx_ Base Addresses						
GPIO Index	Address	Bits in Port				
GPIO0	0xFCA0	15:0				
GPIO1	0xFCC0	15:0				
GPIO2	0xFCE0	13:0				

	Interruptable General I/O Registers						
Reg	Туре	Reset	Abbrev	Description			
0	r/w	0	GPIOx_DDR	Data direction			
1	r/w	0	GPIOx_ODATA	Data output			
2	r	0	GPIOx_IDATA	Data input (I/O pin state)			
3	r/w	0	GPIOx_INT_FALL	Falling edge interrupt enable			
4	r/w	0	GPIOx_INT_RISE	Rising edge interrupt enable			
5	r/w	0	GPIOx_INT_PEND	Interrupt pending source			
6	W	0	GPIOx_SET_MASK	Data set (\rightarrow 1) mask			
7	W	0	GPIOx_CLEAR_MASK	Data clear (\rightarrow 0) mask			
8	r/w	0	GPIOx_BIT_CONF	Bit engine config 0 and 1			
9	r/w	0	GPIOx_BIT_ENG0	Bit engine 0 read/write			
10	r/w	0	GPIOx_BIT_ENG1	Bit engine 1 read/write			

GPIOx_DDR register configure the directions of each of the 16 I/O pins. A bit set to 1 in the DDR turns the corresponding I/O pin to output mode, while a bit set to 0 sets the pin to input mode. The register is set to all zeros in reset, i.e. all pins are inputs by default. The current state of the DDR can also be read.

GPIOx_ODATA register sets the GPIO pin high or low. Only pins that are configured as outputs are affected.

GPIOx_IDATA monitions the current state of a pin. The actual logical levels of the I/O pins are seen in the input data register. Note: The pin state can be read even if the pin is in peripheral mode (i.e. GPIOx_MODE[y] is set).

GPIOx_INT_RISE and GPIOx_INT_FALL configures an interrupt trigger edge. If a bit of the falling edge interrupt enable register (GPIOx_INT_FALL) is set to 1, a falling edge in the corresponding pin (even when configured as output) will set the corresponding bit in the interrupt pending source register (GPIOx_INT_PEND).

If a bit of the rising edge interrupt enable register (GPIOx_INT_RISE) is set to 1, a rising edge in the corresponding pin (even when configured as output) will set the corresponding bit in the interrupt pending source register (GPIOx_INT_PEND).

GPIOx_INT_PEND defines the source of a pending interrupt. If any of the bits in the interrupt pending source register (GPIOx_INT_PEND) are set, an interrupt request is generated. Bits in GPIOx_INT_PEND can be cleared by writing a 1-bit to the bit that is to be cleared.

Note: the interrupt request will remain asserted until all GPIOx_INT_PEND bits are cleared.

Writing to GPIOx_SET_MASK sets the corresponding bits in GPIOx_ODATA. For example, if GPIOx_ODATA = 0xFF00, and 0xF0F0 is written to GPIOx_SET_MASK, the new value for GPIOx_ODATA is 0xFFF0. This is a write-only register.

Writing to GPIOx_CLEAR_MASK clears the corresponding bits in GPIOx_ODATA. For example, if GPIOx_ODATA = 0xFF00, and 0xF0F0 is written to GPIOx_CLEAR_MASK, the new value for GPIOx_ODATA is 0x0F00. This is a write-only register.

GPIOx_BIT_CONF is a bit engine configuration register and selects a mapping between an I/O bit and a data output/input register bit for each of the bit engine registers.

GPIOx_BIT_CONF Bits						
Name Bits Description						
GPIO_BE_DAT1	15:12	Data bit selection (015) for bit engine 1				
GPIO_BE_IO1	I/O bit selection (015) for bit engine 1					
GPIO_BE_DAT0	7:4	Data bit selection (015) for bit engine 0				
GPIO_BE_IO0	3:0	I/O bit selection (015) for bit engine 0				

GPIOx_BIT_ENG0 is a register used to read/write a GPIO pin specified in GPIOx_BIT_CONF register.

When writing a value to the bit engine 0 register, the data bit specified in the configuration register is copied to the data output register bit specified in the same register.

When reading a value from the bit engine 0 register, the data input register bit specified in the configuration register is copied to the data bit specified in the same register, other bits read out as 0.

GPIOx_BIT_ENG1 works just like GPIOx_BIT_ENG0.

11.14 S/PDIF Peripheral

11.14.1 S/PDIF Receiver

S/PDIF receiver interface offers a receiver function for serial digital audio. S/PDIF supports two channels which are multiplexed in one signal line. Synchronizing to S/PDIF input data bit frequency is done by the digital frequency divider the clock of which is generated by the low jitter programmable PLL. Supported sampling frequencies are 32.0 kHz, 44.1 kHz, 48.0 kHz, 96.0 kHz and 192.0 kHz.

S/PDIF Receiver peripheral device supports linear PCM sample recovery up to 24 bits, S/PDIF subframe parity check, biphase channel coding check, subframe, frame, and block integrity checks, and read miss notification. This version does not perform cyclic redundancy check (CRC) for channel status bits in hardware. CRC check can be implemented by software if needed.

Frame format is depicted in Figure 24. X, Y, and Z are the allowed preambles of a subframe. An X subframe and an Y subframe constitute a frame. X preamble is replaced by Z preamble every 192 frames to indicate block limit.

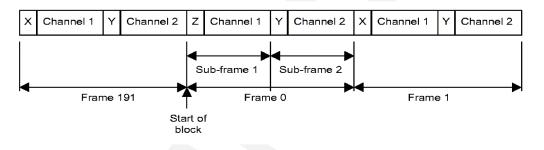


Figure 24: S/PDIF frame format

Subframe format is depicted in Figure 25. A Preamble is a signal pattern lasting 4 time slots. S/PDIF Receiver decodes it and keeps track of frame and block integrity. A payload is max 24-bit sample word. Validity bit indicates whether the payload is valid audio sample. User data bit allows simultaneous data send. Channel information is conveyed in channel status bits as specified in IEC 60958-1 and IEC 60958-3. S/PDIF Receiver peripheral device uses the parity bit to calculate parity check. The result is shown in SP_CTL register bits LPerr and RPerr. Each bit occupies one time slot of the subframe.

									(a
0 3	4				27	28	29	30	31
Preamble	LSB	LSB 24-bit audio sample word		MSB	Validity bit	User data bit	Channel status bit	Parity bit	
									(b
0 3	4	7	8		27	28	29	30	(b

11.14.2 S/PDIF Receiver Registers

	S/PDIF Receiver Registers					
Address	Туре	Reset	Abbrev	Description		
0xFD00	r/w	0x1FF0	SP_RX_CF	S/PDIF control and status register		
0xFD01	r/w	0	SP_RX_CLKDIV	S/PDIF receiver clock divider register		
0xFD02	r	0	SP_LDATA_LSB	S/PDIF input left input channel, bits 8-0		
0xFD03	r	0	SP_LDATA	S/PDIF left input channel, bits 23-8		
0xFD04	r	0	SP_RDATA_LSB	S/PDIF left input channel, bits 8-0		
0xFD05	r	0	SP_RDATA	S/PDIF right input channel, bits 23-8		
0xFD06	r/w	0	SP_RX_STAT	S/PDIF status register		
0xFD07	r	0	SP_RX_BLFRCNT	S/PDIF frame status register		

SP_RX_CF Bits					
Name Bits Description					
SP_RX_CF_EN	3	S/PDIF receiver enable			
SP_RX_CF_INT_ENA	1	Interrupt enable			

SP_RX_CF_EN Enables S/PDIF Receiver peripheral. If disabled, i.e. '0', most of the peripheral is reset and synchronisation to S/PDIF stream is lost and must be re-acquired after enabling.

SP_RX_CF_INT_ENA, when set, enables S/PDIF receiver interrupt.

SP_RX_CLKDIV Bits						
Name Bits Description						
SP_RX_CLKDIV 7:0 Receiver clock divider						

SP_RX_CLKDIV is an 8-bit clock divider value that is used to adjust the S/PDIF Receiver peripheral to proper Fs according to master clock frequency. Default value is 8, resulting to Fs = 48 kHz with master clock = 24.576 MHz. Values smaller than 4 are not allowed, since at least 4 samples per audio sample are needed (2 samples per biphase mark).

S/PDIF Receiver peripheral supports audio sampling frequencies up to 192 kHz.

The supported frequencies and corresponding bit rates are summarized in the following table. Bit rate is sampling frequency multiplied by 64, which is channel number (2) times subframe time slot count (32).

While the divider value should be targeted to bit rate of the table below, the peripheral actually operates with quadruple clock rate. This must be accounted for in the system clocking design. The system clock must be at least four (4) times the bit rate if S/PDIF peripheral is to be used. In other words, SP_CF_DIV values less than four (< 4) are forbidden. Divider must be even number.

S/PDIF Frequencies						
Fs bit rate (Fs x 64) Minimum system clock rate (4 x l						
22.05 kHz	1.4112 MHz	5.6448 MHz				
24 kHz	1.536 MHz	6.144 MHz				
32 kHz	2.048 MHz	8.192 MHz				
44.1 kHz	2.8224 MHz	11.2896 MHz				
48 kHz	3.072 MHz	12.288 MHz				
96 kHz	6.144 MHz	24.576 MHz				
192 kHz	12.288 MHz	49.152 MHz				

Divider = Master clock / bit rate,

Divider > 3, even number.

SP_RX_LDATA, SP_RX_LDATA_LSB, SP_RX_RDATA and SP_RX_RDATA_LSB registers are received data registers. S/PDIF data is 24 bits and it is divided in two registers. 16 MSB bits are in registers SP_RX_LDATA and SP_RX_RDATA. The remaining 8 LSB bits are in registers SP_RX_LDATA_LSB and SP_RX_RDATA_LSB.

SP_RX_STAT Bits							
Name	Bits	type	Description				
SP_RX_STAT_CHSCH	15	r/w	Channel Status Change				
SP_RX_STAT_FRCV	14	r	Frame receive				
N/A	13		always zero				
SP_RX_STAT_MISS	12	r/w	Missed reading previous frame				
SP_RX_STAT_BERR	11	r/w	Block error, Z preamble every 192 frames failure				
SP_RX_STAT_FERR	10	r/w	Frame error, Y preamble after (X or Z) failure				
SP_RX_STAT_SFERR	9	r/w	Subframe error, subframe /= 28 bits				
SP_RX_STAT_BIPHERR	8	r/w	Biphase coding error				
SP_RX_STAT_RPERR	7	r/w	Parity error, right channel				
SP_RX_STAT_LPERR	6	r/w	Parity error, left channel				
SP_RX_STAT_RV	5	r	Validity bit, right channel				
SP_RX_STAT_RU	4	r	User data bit, right channel				
SP_RX_STAT_RC	3	r	Channel status bit, right channel				
SP_RX_STAT_LV	2	r	Validity bit, left channel				
SP_RX_STAT_LU	1	r	User data bit, left channel				
SP_RX_STAT_LC	0	r	Channel status bit, left channel				

SP_RX_STAT_CHSCH is a poll bit for channel status change interrupt.

SP_RX_STAT_FRCV is set by the peripheral when a frame is received, and cleared when SP_RX_LDATA is read.

SP_RX_STAT_MISS bit is set if SP_RX_STAT_FRCV is set and new samples are written to SP_RX_LDATA and SP_RX_RDATA. The time to read the samples is a few clock cycles less than the sampling period.

SP_RX_STAT_BERR is set if the period between Z-preambles is not equal to 192 frames.

SP_RX_STAT_FERR is set if Y-preamble does not follow X-preamble or Z-preamble.

SP_RX_STAT_SFERR is set if the previous subframe has not been equal to 32 time slots.

SP_BIPHERR is set if biphase coding of the S/PDIF channel is compromised.

SP_RX_STAT_RPERR and SP_RX_STAT_LPERR are set if the parity count is failed in the respective subframe.

SP_RX_STAT_MISS, SP_RX_STAT_BERR, SP_RX_STAT_FERR, SP_RX_STAT_SFERR, SP_BIPHERR, SP_RX_STAT_RPERR, and SP_RX_STAT_LPERR are "sticky" bits, i.e. if set they keep their state until cleared by sw.

SP_RX_STAT_RV and SP_RX_STAT_LV are validity bits for right channel and left channel, restectively. When validity bit is '0', sample word is a valid PCM sample.

SP_RX_STAT_RU and SP_RX_STAT_LU are user data bits. User data bits should be used as specified in IEC 60958-3.

SP_RX_STAT_RC and SP_RX_STAT_LC are channel status bits. According to the S/PDIF standard, both channels should convey the same bits. Again, for full description of channel status bits, refer to IEC 60958-3.

SP_RX_BLFRCNT Bits							
Name Bits Type Description							
SP_TX_BLCNT	15:8	r	Transmitter frame number				
(0191)							
SP_RX_FRCNT 7:0 r Receiver frame number (0191)							

SP_TX_BLCNT is the frame number of the next stereo sample to be transmitted (0...191). It is cleared every 192 frames (stereo samples).

SP_RX_FRCNT is the frame number of the last received stereo sample (0...191). It is cleared with each Z preamble or when the counter would reach the value of 192.

S/PDIF Receiver uses two interrupts, a *frame received interrupt* and a *channel status chance interrupt*. Device issues an interrupt when it has received a frame. The interrupt is cleared when SP_RX_LDATA is read. Channel status change interrupt is set when at least one of the following conditions is satisfied:

- Channel status bit 0, selection between professional and consumer mode, is changed.
- Channel status bit 1, which indicates whether the sample word is linear PCM or not, is changed.
- Validity bit for either channel, left or right, is changed.

This interrupt is enabled by setting SP_RX_CF_INT_ENA bit.

11.14.3 S/PDIF Transmitter

S/PDIF is a serial digital audio transfer standard. Sampling frequencies up to 192 kHz and sample word width of 16 - 24 bits are supported for two channels. S/PDIF transmitter peripheral

has a processor interface and one external output signal for digital audio. S/PDIF is described in IEC 60958-1 and IEC 60958-3. Standard connectors are defined in IEC 60268-11:1987 although commercial products feature a variety of connectors both electrical and optical.

The speed of the S/PDIF transmitter depends on the sampling frequency of the audio signal. Since S/PDIF signal is often used to retrieve a clock signal at the receiving end, S/PDIF transmitter must produce an exact frequency with a very low jitter.

Supported sampling frequencies are 32 kHz, 48 kHz, 96 kHz and 192 kHz when master clock frequency is n x 12.288 MHz. 44.1 kHz sampling frequency is supported.

11.14.4 S/PDIF Transmitter Registers

S/PDIF supports audio sample width of 16 to 24 bits. The exact figure is conveyed to the receiver by channel status bits. If the the transmitted sample word is less than 24 bits wide, the remaining LSB's must be zero.

Channel status registers provide interface to the S/PDIF standard implementation channel status bits. The S/PDIF Transmitter inserts the corresponding bits to their proper places in the transfer frame. Channel status data (byte 23) for cyclic redundancy check character (CRCC) is not tested yet.

This document offers a terse description of the channel status bits. Full coverage in IEC 60958-3 is mandatory. Current implementation shares Channel Status Data bits (registers CHS0 and CHS1) for both channels!

S/PDIF Transmitter Registers							
Reg	Туре	Description					
0xFD02	w	0	SP_LDATA_LSB	Left channel Audio sample bits 7-0			
0xFD03	W	0	SP_LDATA	Left channel Audio sample bits 23-8			
0xFD04	W	0	SP_RDATA_LSB	Right channel Audio bits sample 7-0			
0xFD05	w	0	SP_RDATA	Right channel Audio sample bits 23-8			
0xFD08	r/w	0	SP_TX_CHST0	Channel Status 0			
0xFD09	r/w	0	SP_TX_CHST1	Channel Status 1			
0xFD0A	r/w	0	SP_TX_CHST2	Channel Status 1			
0xFD0B	r/w	0x40	SP_TX_CF	Transmitter configuration			

SP_TX_LDATA, SP_TX_LDATA_LSB, SP_TX_RDATA and SP_TX_RDATA_LSB registers are transmitter data registers. S/PDIF data is 24 bits and it is divided in two registers. 16 MSB bits are in registers SP_TX_LDATA and SP_TX_RDATA. The remaining 8 LSB bits are in registers SP_TX_LDATA_LSB and SP_TX_RDATA_LSB.

Channel Status SP_TX_CHST0							
Name	Bits of data	Bits of Chan-	Description				
	word	nel status					
SP_TX_CHST0_CAT	15:8	15:8	Category Code				
SP_TX_CHST0_MD0	7:6	7:6	PCM Mode 0				
SP_TX_CHST0_PCMM	5:3	5:3	Linear PCM Mode				
SP_TX_CHST0_CP	2	2	Copyright				
SP_TX_CHST0_PCM	1	1	Linear PCM				
SP_TX_CHST0_PROCON	0	0	Professional/Consumer				
			mode				

SP_TX_CHST0_CAT indicates to which category the device belongs. Default value is "00000000".

The default value of SP_TX_CHST0_MD0 is "00". No other states are defined yet.

When SP_TX_CHST0_PCM is '0', SP_TX_CHST0_PCMM selects linear PCM mode. The default value is "000" which corresponds to 2 audio channels without pre-emphasis.

SP TX CHST0 CP is a copyright bit. When '0', copyright for current stream is asserted.

SP TX CHST0 PCM is '0' when the audio sample word is linear PCM.

SP TX CHST0 PROCON is '0' in S/PDIF defining consumer usage. If this bit is '1', channel is for professional use and the interface would be called AES/EBU. However, the channel status bits would be different in this case.

Channel Status SP_TX_CHST1								
Name Bits of data Bits of Chan- Description								
word nel status								
-	15:14	31:30	Not specified, "00"					
SP_TX_CHST1_CLKA	13:12	29:28	Clock Accuracy					
SP_TX_CHST1_FS	11:8	27:24	Sampling Frequency					
SP_TX_CHST1_CH	7:4	23:20	Channel Number					
SP_TX_CHST1_SRC	3:0	19:16	Source Number					

SP TX CHST1 CLKA indicates the level of clock accuracy the S/PDIF transmitter is capable of providing to its output.

The sampling frequency of the audio sample stream is defined in SP TX CHST1 FS.

SP_TX_CHST1_CH is the number of channels in the transmission. "0011" indicates two channel stereo format.

SP_TX_CHST1_SRC is the number of sources. "0000" is defined as "do not take into account".

Channel Status SP_TX_CHST2							
Name	Bits of	Bits of Chan-	Description				
	data word	nel status					
SP_TX_CHST2_ST_NWRQ	13		New Word Request (read only bit)				
SP_TX_CHST2_TX_ENA	12		Transmitter enable				
SP_TX_CHST2_RS1_RU	11		User Data bit, right channel				
SP_TX_CHST2_RS1_RV	10		Validity bit, right channel				
SP_TX_CHST2_LS1_RU	9		User Data bit, left channel				
SP_TX_CHST2_LS1_RV	8		Validity bit, left channel				
SP_TX_CHST2_CH2_FSO	7:4	39:36	Original Sampling Frequency				
SP_TX_CHST2_CH2_WRDL	3:1	35:33	Sample Word Length				
SP_TX_CHST2_CH2_WRDLM	0	32	Maximum Sample Word Length				

SP_TX_CHST2_ST_NWRQ bit is set when new sample words must be written to sample word registers. It is cleared when SP_TX_CHST2_TX_LDATA is written. Hence, SP_TX_CHST2_ST_NWRQ has the same function as S/PDIF Interrupt, but this bit is not controlled by SP_TX_CHST2_CF_IE.

SP_TX_CHST2_TX_ENA is the S/PDIF transmit enable. Transmitter is enabled when this register is set.

SP_TX_CHST2_RS1_RU is a user data bit for the right channel. Default value is '0'. User data bits can be used to convey an application specific message to the receiver. Some equipment categories dictate the message, see IEC 60958-3.

SP_TX_CHST2_RS1_RV is the validity bit of the right channel sample word. If the audio sample word is not a linear PCM, this bit must be set.

SP_TX_CHST2_LS1_LU is a user data bit for the left channel. Default value is '0'. User data bits can be used to convey an application specific message to the receiver. Some equipment categories dictate the message, see IEC 60958-3.

SP_TX_CHST2_LS1_LV is the validity bit of the left channel sample word. If the audio sample word is not a linear PCM, this bit must be set.

SP_TX_CHST2_CH2_FSO defines the original sampling frequency of the audio stream. "0000" means the original sampling frequency is not indicated (default).

In SP_TX_CHST2_CH2_WRDL, the sample word length is coded with respect to SP_TX_CHST2_CH2_WRD "000" means the word length is not indicated.

SP_TX_CHST2_CH2_WRDLM indicates whether the maximum word length is 24 bits ('1') or 20 bits ('0').

S/PDIF TX Configuration SP_TX_CF					
Name Bits Description					
SP_TX_CF_CLKDIV	15:2	Clock divider			
SP_TX_CF_IE	1	Interrupt enable			
SP_TX_CF_SND	0	Send words			

SP_TX_CF_CLKDIV contains a clock divider value that is used to generate S/PDIF Transmitter operating frequency. The target is twice the bit rate. Bit rate is sampling frequency of the transmitted signal multiplied by 64. For example, 48 kHz audio signal requires bit rate of 3.072 MHz and consequent clock frequency for the peripheral is 6.144 MHz. Default value for

SP_TX_CF_CLKDIV is 4, resulting to Fs = 48 kHz when master clock frequency is 24.576 MHz. Zero is forbidden value.

S/PDIF Transmitter frequencies							
Fs	Target frequency for clock divider						
32 kHz	2.048 MHz	4.096 MHz					
44.1 kHz	2.8224 MHz	5.6448 MHz					
48 kHz	3.072 MHz	6.144 MHz					
96 kHz	6.144 MHz	12.288 MHz					
192 kHz	12.288 MHz	24.576 MHz					

Divider = Master clock / Targer frequency, Divider = Master clock / (Fs * 64 * 2).

SP_TX_CF_IE, when '1', enables processor interrupt request when new values must be written for the sample word registers: SP_LDATA and SP_RDATA. Default is '0'.

SP_TX_CF_SND, when '1', S/PDIF Transmitter sends the data in the sample word registers. Otherwise only empty subframes with zero payload will be sent. This is because the receiver may use S/PDIF signal as a clock source and hence, the S/PDIF signal must not stop even though no data is sent.

The S/PDIF Transmitter has one interrupt. Interrupt request is issued when SP_ST_NWRQ is set, i.e. when new sample words must be written to the sample word registers.

11.15 UART (Universal Asynchronous Receiver/Transmitter) Peripheral

The RS232 UART implements a serial interface using RS232 standard 8N1 (8 data bits, no parity, 1 stop bit).

Start bit	D0	D1	D2	D3	D4	D5	D6	D7	Stop bit
--------------	----	----	----	----	----	----	----	----	-------------

Figure 26: RS232 serial interface protocol

When the line is idling, it stays in logic high state. When a byte is transmitted, the transmission begins with a start bit (logic zero) and continues with data bits (LSB first) and ends up with a stop bit (logic high). 10 bits are sent for each 8-bit byte frame.

11.15.1 UART Peripheral Registers

UART Registers							
Reg	Description						
0xFE00	r	0	UART_STATUS[4:0]	Status			
0xFE01	r/w	0	UART_DATA[7:0]	Data			
0xFE02	r/w	0	UART_DATAH[15:8]	Data High			
0xFE03	r/w	0	UART_DIV	Divider			

UART_STATUS register monitors the UART status.

UART_STATUS Bits					
Name	Bits	Description			
UART_ST_FRAMERR	4	Framing Error (stop bit was 0)			
UART_ST_RXORUN	3	Receiver overrun			
UART_ST_RXFULL	2	Receiver data register full			
UART_ST_TXFULL	1	Transmitter data register full			
UART_ST_TXRUNNING	0	Transmitter running			

UART_ST_FRAMERR is set at the time of stop bit reception. When reception is functioning normally, stop bit is always "1". If, however, "0" is detected at the line input at the stop bit time, UART_ST_FRAMERR is set to "1". This can be used to detect "break" condition in some protocols.

UART_ST_RXORUN is set if a received byte overwrites unread data when it is transferred from the receiver shift register to the data register, otherwise it is cleared.

UART_ST_RXFULL is set if there is unread data in the data register.

UART_ST_TXFULL is set if a write to the data register is not allowed (data register full).

UART_ST_TXRUNNING is set if the transmitter shift register is in operation.

UART_DATA is the uart data register. A read from UART_DATA returns the received byte in bits 7:0, bits 15:8 are returned as '0'. If there is no more data to be read, the receiver data register full indicator will be cleared.

A receive interrupt will be generated when a byte is moved from the receiver shift register to the receiver data register.

A write to UART_DATA sets a byte for transmission. The data is taken from bits 7:0, other bits in the written value are ignored. If the transmitter is idle, the byte is immediately moved to the transmitter shift register, a transmit interrupt request is generated, and transmission is started. If the transmitter is busy, the UART_ST_TXFULL will be set and the byte remains in the transmitter data register until the previous byte has been sent and transmission can proceed.

UART_DATAH is the same register as the UART_DATA, except that bits 15:8 are used.

UART_DIV register configures uart tansmission speed.

UART_DIV Bits					
Name	Bits	Description			
UART_DIV_D1	15:8	Divider 1 (0255)			
UART_DIV_D2	7:0	Divider 2 (8255)			

The divider is set to 0x0000 in reset. The ROM boot code must initialize it correctly depending on the master clock frequency to get the correct bit speed. The second divider (D_2) must be from 8 to 255.

The TX/RX speed $f = \frac{f_m}{(D_1+1)\times(D_2)}$ bps, where f_m is XTALI.

11.16 Watchdog Peripheral

The watchdog consist of a watchdog counter and some logic. After reset, the watchdog is inactive. The counter reload value can be set by writing to WDOG_CF. The watchdog is activated by writing 0x4ea9 to register WDOG_KEY. Every time this is done, the watchdog counter is reset. Every 65536'th XTALI clock cycle the counter is decremented by one. If the counter underflows, it will activate vsdsp's internal reset sequence.

Thus, after the first 0x4ea9 write to WDOG_KEY, subsequent writes to the same register with the same value must be made no less than every $65536 \times WDOG_CF$ clock cycles.

Once started, the watchdog cannot be turned off. Also, a write to WDOG_CF doesn't change the counter reload value.

After watchdog has been activated, any read/write operation from/to WDOG_CF or WDOG_DUMMY will invalidate the next write operation to WDOG_KEY. This will prevent runaway loops from resetting the counter, even if they do happen to write the correct number. Writing an incorrect value to WDOG_KEY will also invalidate the next write to WDOG_KEY.

Reads from watchdog registers return undefined values.

11.16.1 Watchdog Registers

Watchdog Registers						
Reg	Туре	Reset	Abbrev	Description		
0xFE20	W	0	WDOG_CF	Configuration		
0xFE21	W	0	WDOG_KEY	Clock configuration		
0xFE22	W	0	WDOG_DUMMY[-]	Dummy register		

11.17 I2S Peripheral

VS1005g has a bi-directional I2S digital interface. I2S is a serial audio interface which uses serial bit clock (i2s_bck), frame sync (i2s_frm) and serial data line (i2s_dout, i2s_din) to transfer data. I2S frame consists of left and right data which is transmitted left word first and MSB bit first. Data is latched out at falling edge of bit clock and latched in at rising edge of bit clock. I2S data format is shown in Figure 27.

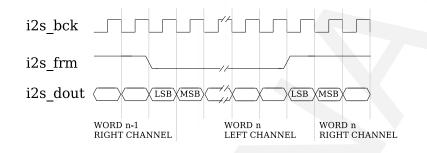


Figure 27: I2S frame format

11.17.1 I2S Peripheral Registers

I2S Registers							
Reg	Туре	Reset	Abbrev	Description			
0xFE60	r/w	0	I2S_CF[13:0]	Configuration and status register			
0xFE61	r/w	0	I2S_LEFT_LSB	Left data bits[15:0]			
0xFE62	r/w	0	I2S_LEFT	Left data bits[31:16]			
0xFE63	r/w	0	I2S_RIGHT_LSB	Right data bits[15:0]			
0xFE64	r/w	0	I2S_RIGHT	Right data bits[31:16]			

I2S_CF Bits					
Name	Bits	Description			
12S_CF_32B ¹	13	32-bit mode (1) / 16-bit mode (0) select			
I2S_CF_INTENA ¹	12	I2S peripheral interrupt enable			
I2S_CF_RXRFULL	11	Receiver right data register full			
I2S_CF_RXLFULL	10	Receiver left data register full			
I2S_CF_RXORUN	9	Receiver over run flag			
I2S_CF_TXRFULL	8	Transmitter right data register full			
I2S_CF_TXLFULL	7	Transmitter left data register full			
I2S_CF_TXURUN	6	Transmitter under run flag			
I2S_CF_MODE ¹	5	I2S output mode: DSP (1) or SRC (0) out			
12S_CF_FS[1:0] ¹	4:3	I2S sample rate selection			
I2S_CF_ENA	2	I2S peripheral enable			
I2S_CF_ENAMCK ¹	1	I2S master clock (12 MHz) pad driver enable			
I2S_CF_MASTER1	0	I2S master (1) / slave (0) mode select			

¹ Value can only be changed if I2S_CF_ENA has previously been cleared to 0.

I2S_CF_MASTER bit is used to select between master (1) and slave (0) modes. In master mode the VS1005g generates bit clock and frame sync signals. In slave mode the external I2S master generates the clock and sync signals.

I2S_CF_ENAMCK is the 12 MHz output clock enable signal. It can be used to clock external I2S circuitry. This clock is the same clock as the XTALI oscillator clock of VS1005g.

I2S_CF_ENA is the transmitter and receiver enable signal. When set the receiver and transmitter enter the active state. Other fields of the same register (I2S_CF_32B, I2S_CF_INTENA, I2S_CF_MODE, I2S_CF_FS, I2S_CF_ENAMCK, and I2S_CF_MASTER) can only be changed if I2S_CF_ENA is 0.

I2S_CF_FS register is used to set the I2S peripheral sample rate. This register can be modified only when I2S is in idle state, i.e. I2S_CF_ENA is reset. Next table lists the sample rates when XTALI = 12.288 MHz is used.

I2S Sample Rates						
I2S_CF_FS[1:0] 16-bit mode 32-bit mode						
11	48 kHz	24 kHz				
10	192 kHz	96 kHz				
01	96 kHz	48 kHz				
00	48 kHz	24 kHz				

I2S_CF_MODE register selects between DSP mode (1) and SRC mode (0). In DSP mode the data is transferred from registers I2S_LEFT, I2S_LEFT_LSB, I2S_RIGHT and I2S_RIGHT_LSB. In SRC mode which is the default data is sampled from DAC's SRC filter and I2S is operating in master mode only.

I2S_CF_TXURUN is the transmitter under run flag register. It is set if left or right data buffer register was empty as it was copied to shifter register.

I2S_CF_TXLFULL and I2S_CF_TXRFULL registers are the transmitter data buffer full flags for left and right channel. Flags are set when transmitter data buffer registers are modified. The flags are reset as the left and right data buffer is copied to shifter register.

I2S_CF_RXORUN is the receiver over run flag. It is set when receiver data buffers were full and new frame was received. The flag is reset by writing it to '0'.

I2S_CF_RXLFULL and I2S_CF_RXRFULL are the receiver data buffer full flags for left and right channel. Flags are set when receiver data buffer registers are full. The flags are reset as the left and right data buffer is read.

I2S_CF_INTENA enables the I2S interrupt when set.

I2S_CF_32B register selects between 32-bit (1) and 16-bit (0) data format. This register can be modified only in idle state.

I2S_LEFT, I2S_LEFT_LSB, I2S_RIGHT and I2S_RIGHT_LSB are the left and right data registers for receiver and transmitter. Each write to I2S_LEFT and I2S_RIGHT registers sets the I2S_CF_TXLFULL and I2S_CF_TXRFULL flags. Each read from I2S_LEFT and I2S_RIGHT registers resets the I2S_CF_RXLFULL and I2S_CF_RXRFULL flags. In 16-bit mode the registers I2S_LEFT_LSB and I2S_RIGHT_LSB are not used. In 32-bit mode they are used to transfer 16 LSBs of data.

11.18 Timer Peripheral

VS1005g has three 32-bit timers that can be initialized and enabled independently of each other. If enabled, a timer initializes to its user initialized start value, and starts decrementing every clock cycle. When the value goes past zero, an interrupt request is generated, and the timer initializes to the value in its start value register, and continues downcounting. A timer stays in that loop as long as it is enabled. Each timer has its own interrupt request.

A timer has a 32-bit timer register for down counting and a 32-bit TIMER1_LH register for holding the timer start value written by the processor. Timers have also a 3-bit TIMER_ENA register. Each timer is enabled (1) or disabled (0) by a corresponding bit of the enable register.

	Timer Registers							
Reg	Туре	Reset	Abbrev	Description				
0xFE80	r/w	0	TIMER_CF[7:0]	Timer configuration				
0xFE81	r/w	0	TIMER_ENA[2:0]	Timer enable				
0xFE84	r/w	0	TIMER_T0L	Timer0 startvalue - LSBs				
0xFE85	r/w	0	TIMER_T0H	Timer0 startvalue - MSBs				
0xFE86	r/w	0	TIMER_T0CNTL	Timer0 counter - LSBs				
0xFE87	r/w	0	TIMER_T0CNTH	Timer0 counter - MSBs				
0xFE88	r/w	0	TIMER_T1L	Timer1 startvalue - LSBs				
0xFE89	r/w	0	TIMER_T1H	Timer1 startvalue - MSBs				
0xFE8A	r/w	0	TIMER_T1CNTL	Timer1 counter - LSBs				
0xFE8B	r/w	0	TIMER_T1CNTH	Timer1 counter - MSBs				
0xFE8C	r/w	0	TIMER_T2L	Timer2 startvalue - LSBs				
0xFE8D	r/w	0	TIMER_T2H	Timer2 startvalue - MSBs				
0xFE8E	r/w	0	TIMER_T2CNTL	Timer2 counter - LSBs				
0xFE8F	r/w	0	TIMER_T2CNTH	Timer2 counter - MSBs				

11.18.1 Timer Peripheral Registers

TIMER_CF Bits					
Name Bits Description					
TIMER_CF_CLKDIV 7:0 Master clock divider					

TIMER_CF_CLKDIV is the master clock divider for all timer clocks. The generated internal clock frequency $f_i = \frac{f_m}{c+1}$, where f_m is the master clock frequency and c is TIMER_CF_CLKDIV. Example: With a 12 MHz master clock, TIMER_CF_DIV=3 divides the master clock by 4, and the output/sampling clock would thus be $f_i = \frac{12MHz}{3+1} = 3MHz$.

TIMER_ENA Bits					
Name Bits Description					
TIMER_ENA_T2	2	Enable timer 2			
TIMER_ENA_T1	1	Enable timer 1			
TIMER_ENA_T0	0	Enable timer 0			

TIMER_Tx[L/H] register defines the Timer X Startvalue. The 32-bit start value TIMER_Tx[L/H] sets the initial counter value when the timer is reset. The timer interrupt frequency $f_t = \frac{f_i}{c+1}$ where f_i is the master clock obtained with the clock divider and c is TIMER_Tx[L/H].

TIMER_TxCNT[L/H] contains the current counter values. By reading this register pair, the user may get knowledge of how long it will take before the next timer interrupt. Also, by writing to this register, a one-shot different length timer interrupt delay may be realized.

Each timer has its own interrupt, which is asserted when the timer counter underflows.

11.19 Real Time Clock (RTC)

The Real Time Clock (RTC) is a 32-bit time keeping counter which has a resolution of 1 second. It is used for accurate time measurements when the CPU is powered down. The RTC also contains 512 bits of memory storage for user applications.

The oscillator input clock frequency for the RTC is 32768 Hz. This signal is divided by 256 to give a 128 Hz signal. This signal is then further divided by 128 and forwarded to the real time clock. For better temporal resolution, it is possible to readh the phase of the 1/128 s counter.

Other functions of VS1005g RTC are time alarm and 32 16-bit word register memories for battery backup.

The RTC consists of two parts, the Real Time Clock module and its DSP interfacing peripheral. The RTC has its own power network which enables its use when the rest of the system is powered off.

11.19.1 RTC Peripheral Registers

RTC Interface Registers							
Reg Type Reset Abbrev Description							
0xFEA0	r/w	0	RTC_LOW	RTC data register bits [15:0]			
0xFEA1	r/w	0	RTC_HIGH	RTC data register bits [31:16]			
0xFEA2	r/w	0	RTC_CF[4:0]	RTC control and status register			

RTC_CF Bits				
Name Bits Description				
RTC_CF_GSCK	4	Generate serial clock for RTC		
RTC_CF_EXEC 3		RTC execute instruction		
RTC_CF_RDBUSY 2		Read cycle init and busy flag		
RTC_CF_DBUSY 1		Data cycle init and busy flag		
RTC_CF_IBUSY 0		Instruction cycle init and busy flag		

RTC_LOW and RTC_HIGH are the RTC data registers. Write to RTC_CF registers busy bits start a data transfer to/from RTC. When the operation has finished the status bit is reset. If the operation is a read operation, the result can be read from RTC_HIGH and RTC_LOW registers.

RTC_IBUSY is the instruction cycle initialization register. When RTC_IBUSY is set the current content of RTC_HIGH and RTC_LOW registers is transferred to RTC and latched to its instruction register. When the RTC has been read it resets RTC_IBUSY.

RTC_DBUSY is the data cycle initialization register. When RTC_DBUSY is set the current content of RTC_HIGH and RTC_LOW registers is transferred to RTC data buffer. the RTC is ready it resets RTC_DBUSY.

RTC_RDBUSY is the data read cycle initialization register. Before reading RTC a valid instruction must be in RTC instruction register (RTC_I_READRTC, RTC_I_RDDIV128). When RTC_RDBUSY is set the RTC first samples the selected RTC register to RTC data buffer.

VS1005g Datasheet VS1005G PERIPHERALS AND REGISTERS

Then the data is read to RTC_HIGH and RTC_LOW registers. When the RTC is ready it resets RTC_RDBUSY.

RTC_EXEC is used to execute the current RTC instruction. Before executing an instruction a valid instruction must be in RTC instruction register (RTC_I_RESET, RTC_I_LOADRTC). For RTC_I_RESET, RTC_I_LOADRTC instructions the RTC_EXEC register must be set for 1 second before the instruction is executed. The user must reset the RTC_EXEC register after this time has elapsed.

RTC_GSCK is used to generate RTC memory clock. When RTC_GSCK is set the rtc_if generates one clock pulse for memory store. RTC_EXEC must be set during this operation. Rtc_if resets this register automatically.

RTC instructions are 8-bit codes which are written to RTC_HIGH[15:8] before setting RTC_IBUSY.

RTC Instruction Codes					
Instruction Hex code De		Delay	Description		
RTC_I_RESET	EB	1/128 s	Reset control registers		
RTC_I_LOADRTC	59	1 s	Initialize time counter register		
RTC_I_READRTC	56	1/12 MHz	Read time counter register		
RTC_I_RDDIV128	C7	1/12 MHz	Read 7-bit 1/128 s counter phase		
RTC_I_ALARM	AC	1/128 s	Set RTC alarm time		
RTC_I_MEM_WR	35	1/12 MHz	Write to rtc memory		
RTC_I_MEM_RD	ЗA	1/12 MHz	Read from RTC memory		

11.20 10-Bit Successive Approximation Register Analog-to-Digital Converter (SAR)

VS1005g has a 10-bit ADC with following features:

- Successive Approximation Register conversion (SAR)
- Up to 5 analog input channels
- Up to 0.1Msps conversion speed
- AVDD voltage as reference
- Continuous or software enabled (once only) operation modes
- input range from 0V to AVDD

Before SAR can be used the following analog control registers must be configured.

Analog configuration for SAR						
Register Name Address Value Description						
ANA_CF2	0xFED2	0x0008	Analog reference			
ANA_CF1	0xFECB	0x0100	SAR power down			

SAR operation is controlled with configuration register and the 10-bit data is stored in the data register. SAR generates an interrupt as the data register is updated.

SAR Data Register						
Reg Type Reset Abbrev Description						
0xFECD r 0 SAR_DAT[9:0] 10-bit SAR data register						

SAR Control/Configuration Register							
RegTypeResetAbbrevDescription							
0xFED6 r/w 0x003F SAR_CF[11:0] SAR control register							

	SAR_CF Bits					
	Name Bits Description					
ĺ	SAR_CF_SEL	11:8	SAR input selection			
Ì	SAR_CF_ENA	7	SAR initialize read cycle			
	SAR_CF_MODE	6	SAR operation mode			
	SAR_CF_CK[5:0]	5:0	SAR Clock divider register			

SAR_CF_ENA is used to start SAR cycle. When this register is set the SAR measures voltage from a given channel and stores the 10-bit value to SAR_DAT register. SAR_CF_ENA is reset when the result is ready and can be read from data register.

SAR_CF_CK[5:0] is used to select the interface clock speed divider. The SAR clock runs at $\frac{XTALI}{32 \times (SAR_CF_CK+1)}$.

SAR_CF_MODE selects between continuous mode ('1') and run-once ('0') modes.

SAR input channel is selected with SAR_CF_SEL[3:0] register. This register is double buffered against possible conversion time changes. The register is sampled as the SAR is enabled or it is in idle state. In continuous mode the register is sampled at the end of each conversion.

S	SAR in	put channel sele		
Decimal	Hex	Package Pin	Max Voltage	Description
12	0xC	67	3.6 V	aux0
10	0xA	Internal	3.6 V	Input voltage VHIGH divided by 2
8	0x8	Internal / 78 ¹	3.6 V	RCAP 1.2 or 1.6 V reference voltage
7	0x7	68	3.6 V	aux1
6	0x6	Internal / 64 ²	1.95 V	RTC voltage
5	0x5	Internal / 15 1 3	1.95 V	Core voltage CVDD
4	0x4	71	3.6 V	aux4
2	0x2	70	3.6 V	aux3
0	0x0	69	3.6 V	aux2

¹ Although connected to a pin, this voltage is normally generated by VS1005g. In a typical case this pin should not be driven externally.

² Maximum allowed external voltage to this pin is RTCVDD (1.95 V). Failing to follow this limitation may break VS1005g's internal digital circuitry.

³ Maximum allowed external voltage to this pin is CVDD (1.95 V). Failing to follow this limitation may break VS1005g's internal digital circuitry.

Other pin values than mentioned in the table are not allowed.

VS1005g Datasheet VS1005G PERIPHERALS AND REGISTERS

11.21 Pulse Width Modulation Unit

VS1005g has a PWM output which can be programmed to generate any pulse width within 256 XTALI clock periods.

PWM Registers					
RegTypeResetAbbrevDescription					
0xFED4	0 xFED4 r/w 0		PWM_FRAMELEN[7:0]	PWM frame length, 2 - 255 clock cycles	
0xFED5	r/w	0	PWM_PULSELEN[7:0]	PWM pulse width, 0 - 255 clock cycles	

PWM_FRAMELEN[7:0] defines the PWM frame length. Values 0 and 1 are not allowed and they place the unit in powerdown (output is zero). With frame values > 1 the pwm output is enabled with rising edge at start of frame and falling edge at PWM_PULSELEN[7:0]. If PWM_PULSELEN is zero the output is always zero. If PWM_PULSELEN > PWM_FRAMELEN the output is always at logic high state.

PWM unit generates an interrupt request at the start of each frame.

The PWM register take effect only when the PWRBTN pin is low. If PWRBTN pin is high the pwm output generates a free-running oscillation for external powering circuitry. The oscillation requires that there is an external pull-up resistor connected to the PWM pin.

PWM start-up oscillator (PWRBTN pin high)				
Item	Min	Typical	Max	Description
Pull-up resistor		100 k Ω		Value of external pull-up resistor
Start-up frequency		370 kHz		Start-up oscillation frequency

11.22 Special Features

11.22.1 Software Protection

VS1005g hardware supports software protection. Two registers control the hardware debugging and serial flash access. To use on-circuit debugging it must first be enabled by a software register. After power-up the debugger is disabled. The register can be set and reset by software. The access to serial flash can be disabled with a software register after boot-up. When serial flash is disabled it can not be enabled by software. To re-enable it requires system reset (SYSRST).

12 VS1005g Debugger

VS1005g has a hardware debugger which uses common Joint Test Action Group (JTAG) interface. The JTAG pins are in hardware debug mode when the dbgmode pin is pulled high. This enables the JTAG pins to access Test Acess Port (TAP) controller and swithes clocks to debug mode.

VS1005g Hardware Debuger Pins					
Name Package pin Description					
tms	31	Test mode select			
tdi	32	Test data in			
tdo	33	Test data out			
tck	34	Test clock			
dbgreq	35	Debug interrupt			
dbgmode	61	JTAG debug mode enable			

Debug functions are controlled with JTAG DR (data) and IR (instruction) registers which can be written and read in predefined JTAG states. JTAG state machine is shown in Figure 28.

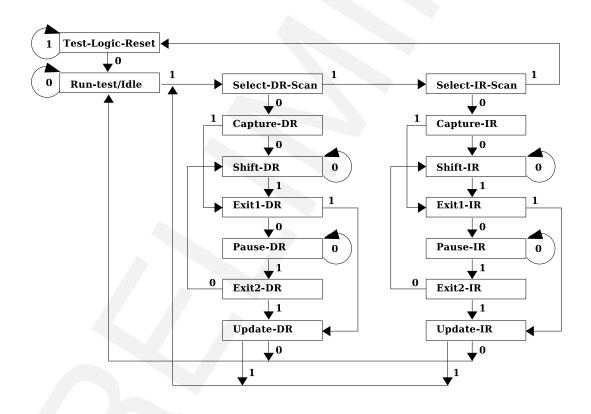


Figure 28: JTAG state machine

TAP function is selected by writing a special 4-bit instruction to IR register. Additionally to debug functions, some common JTAG functions are supported.

VS1005g JTAG instruction codes			
Instruction IR register Description			
BYPASS	"0000"	Places jtag to bypass mode. In bypass mode there is one clock cycle delay between tdi and tdo.	
IDCODE	"1111"	Places jtag's 32-bit ID code register between tdi and tdo.	

The snooper module supports up to 8 breakpoints which can be programmed to trigger at data/address events. Snooper's control and status registers are

- Enable register (SENA)
- 16-bit event count register (ECNT)
- 16-bit instruction address register (BADDR)

SENA register enables the snooper module when set. The register is reset when breakpoint interrupt is triggered and all snooper logic is halted. ECNT register is a decrementing counter which is decremented by one at each breakpoint event. When register is zero and a breakpoint event occurs, a breakpoint interrupt is generated. BADDR register stores the instruction address when the breakpoint interrupt is generated.

Each breakpoint has three configuration registers:

- Configuration register
- Address register
- Data register

Breakpoint configuration register is used to set-up a breakpoint.

Breakpoint Configuration Register Bits				
Name Register Bit		Description		
Status	7	Breakpoint triggered flag		
Bus Type	6:5	X/Y/I bus selection		
Access Type	4:3	Fetch/Read/Write access type selection		
Condition Type	2:0	Breakpoint condition selection		

Breakpoint status bit is set when the breakpoint triggeres an interrupt.

Breakpoint Bus Type Bit Configuration			
Value Bus Description			
'00'		Breakpoint at I-bus	
'01'	Х	Breakpoint at X-bus	
'10'	Y	Breakpoint at Y-bus	
'11'	Illegal	Don't use	

Breakpoint Access Type Bit Configuration			
Value	Register Bit	Description	
'00'	Disabled	Breakpoint is disabled	
'01'	Fetch/Read	Breakpoint set to snoop read accesses	
'10'	Write	Write Breakpoint set to snoop write accesses	
'11' Read or Write Breakpoint set to snoop both the read and wr		Breakpoint set to snoop both the read and write	
		accesses	

Breakpoint Condition Type Bit Configuration				
Value Bus		Description		
'000'	Disabled	Breakpoint disabled		
'001'	Any	Match only address		
'010'	=	X/Y-bus data EQUAL to snoop breakpoint data		
'011'	<i>≠</i>	X/Y-bus data NOT EQUAL to snoop breakpoint data		
'100'	< signed	Signed comparison of X/Y-bus data LESS THAN		
		snoop breakpoint data		
'101'	\geq signed	Signed comparison of X/Y-bus data GREATER THAN		
		OR EQUAL to snoop breakpoint data		
'110'	Illegal	Don't use		
'111'	Illegal	Don't use		

The hardware debugger requires the VLSI JTAG connector and Integrated Development Environment VSIDE for full debug capabilities. For further information about the hardware debugger connect VLSI technical support.

13 Document Version Changes

This chapter describes the latest and most important changes to this document.

Version 0.70 2020-09-28

- Reformatted table in Chapter 6.4, VS1005g Pin Descriptions, for better legibility.
- Changed LFGA pin 77 name from AGND to VREF_0V in Chapter 6.3, *Pin Assignments*, and Chapter 6.4, *VS1005g Pin Descriptions*. This change was made to better reflect the actual function of the pin.
- UART_DIV_D2 minimum value changed from 6 to 8 in Chapter 11.15.1, UART Peripheral Registers.
- Added register DAC_MTEST to new Chapter 11.7.2, *Test Modes and DAC/ADC Control Registers*.
- Added usage examples to GPIOx_SET_MASK and GPIOx_CLEAR_MASK in Chapter 11.13, Interruptable General Purpose IO Ports 0-2.
- Typo corrections, and other, minor modifications.

Version 0.67, 2019-05-17

- Updated Chapter 3, Definitions.
- Removed VS8005g from Chapter 4, Product Variants.
- Corrected descriptons for pins DIA1... DIA3 in Chapter 6.4, Pin Descriptions.
- Updated text in Chapter 11.19, Real Time Clock (RTC).
- Clarified description for register SP_RX_BLFRCNT in Chapter 11.14.2, *S/PDIF Receiver Registers*.

Version 0.66, 2017-09-12

- Added new Chapter 7.1, *Important Tips and Guidelines for Designing VS1005g Boards*. It is strongly recommended to read it.
- Removed MP3 license description from Chapter 2, *Licenses*, as all its patents have expired.
- Typo fixes.

Version 0.65, 2017-03-28

- Corrected USB speed class.
- Typo fixes.

Contact Information 14

VLSI Solution Oy Entrance G, 2nd floor Hermiankatu 8 FI-33720 Tampere FINLAND

URL: http://www.vlsi.fi/ Phone: +358-50-462-3200 Commercial e-mail: sales@vlsi.fi

For technical support or suggestions regarding this document, please participate at http://www.vsdsp-forum.com/ For confidential technical discussions, contact support@vlsi.fi

